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Introduction

In linear algebra, the trace of a matrix A acting on an n-dimensional vector
space V' can be related to its n eigenvalues {\;}}_; by the equation

Tr(A) =) A,
k=1

which we will call the trace equation. For matrices A acting on a complex
vector space V, the trace equation is a direct consequence of the existence
of the Jordan normal form, combined with the fact that Tr(BC) = Tr(CB)
for any matrices B and C acting on V. In the case that V' is a real vector
space, the same equality holds if we allow the eigenvalues to be complex,
which can be proven by letting A act on the complexification of V. A
different approach towards proving the trace equation is by analyzing the
coefficients of the characteristic polynomial of A. Furthermore, the identity
Tr(BC') = Tr(CB) also implies that the traces are equal whenever we have
two different matrix representations A; and A, of a linear operator A. This
shows that the trace of a linear operator is a characteristic of the operator
and not of the chosen matrix representation. It would certainly be nice to
extend the definition of the trace beyond operators on finite-dimensional
vector spaces in such a way that the trace equation is satisfied. This,
however, unavoidably leads to different issues we need to resolve.

To make sense of our trace equation for some linear operator A on a
vector space V', we clearly must ensure that at least the following three
conditions are satisfied:

1. There exists a well-defined (i.e. independent of any chosen represen-
tation) notion of a trace.

2. There exists a suitable multiplicity, at least for the nonzero eigenval-
ues.

3. The nonzero eigenvalues of A, counted according to the multiplicity
from 2, are absolutely summable.

Ignoring the question about how to properly define a generalized trace for
now, we see that conditions 2 and 3 together already give some problems.
For our new trace equation to be consistent with the finite-dimensional
case, we want the definition of the multiplicity m, of a nonzero eigenvalue
A to be the same for any vector space V. This would lead us to define
my = dim(G, ), where G, is the generalized eigenspace of \.

For any infinite-dimensional vector space V', this already implies that
the identity operator Iy fails to satisfy the third condition as dim(G) =
dim(V) = oo. Furthermore, there exists an operator A on the sequence
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space ['(N,R) such that A?> =0 and Tr(A) = 1 when written as an infinite
matrix [13, Theorem 2.d.3]. This implies that there exists no such thing as
an exotic multiplicity that will make the trace equation valid in all Banach
spaces, let alone all vector spaces. This shows that we cannot hope to find
a generalization of the trace to infinite dimensional vector spaces, such that
the trace equation is satisfied for all linear operators on V. However, not
all hope is lost as we may try to restrict ourselves to specific subsets of
linear operators such that all three conditions are fullfilled.

For complex Hilbert spaces, this strategy is particularly fruitful and
leads to a result known as Lidskii’s theorem, in honour of Lidskii who
published his proof in 1959 [12] (even though some sources, like Pisier [18],
claim that Grothendieck discovered this earlier [7]). For a separable Hilbert
space H with orthonormal basis F, we define the trace Tr(A) of an operator
A by

Tr(A) =) (Ae,e).
eclk
As before, applying to A = I shows that it is too much to ask for this trace
to be defined on any bounded linear operator A € B(H). However, we can
define the space of trace-class operators L'(H) as

L'Y(H)={Ac B(H) : Tr(|4]) < oo},

where |A| = vV A*A is defined using the standard square root for positive
operators [19, Theorem VI.9]. For any trace-class operator, the trace is
convergent and is independent of the choice of E [19, Theorem VI.24].
This implies that Tr is a well-defined functional on L*( H), hence trace-class
operators satisfy our first condition. It can be proven that any trace-class
operator is compact [19, Theorem VI.21], which implies that the algebraic
multiplicity is finite for all nonzero eigenvalues (see Section 4.1), hence the
second condition is also satisfied. Finally, by combining Theorem VI.21
from [19] and Theorem 1.15 from [22], it also follows that the third condition
is satisfied. With all three conditions satisfied, at least both sides of the
trace equation are well-defined for all operators A € L'(H). Proving that
equality holds is not trivial, one proof can be found in Simon [22, Section
3] and uses the fact that for operators of the form I + zA, with I the
identity operator, z a complex scalar and A a trace-class operator, a suitable
determinant function det can be defined such that z — det(l + zA) is
an entire function. The trace equality is then proven by analyzing the
coefficients in the analytic expansion of det(/ + zA). This strategy is based
on the proof of the trace equation for matrices using the characteristic
polynomial.

Lidskii’s theorem is a beautiful generalization of the trace equation.
However, it only applies to complex Hilbert spaces, which are particularly
well-behaved. In general vector spaces, the analysis breaks down at several



points, most notably due to the absence of an orthonormal basis, meaning
a different trace construction is needed.

In this thesis, we will look at some of the things we can say about the
generalization of the trace equation in Banach spaces. A very recent paper
by Figiel and Johnson [6], only published in 2016, plays a central role in
this discussion. This paper proves that two different properties of Banach
spaces, namely the Lidskii property and the nest approximation property,
are equivalent in complex Banach spaces satisfying the approximation prop-
erty. A Banach space with the Lidskii property can for now be thought of
as a Banach space that allows for a specific generalization of the trace equa-
tion. Furthermore, the nest approximation property is a stronger variant of
the well-known approximation property. Whereas the approximation prop-
erty is about approximating the identity operator by finite-rank operators,
the nest approximation property also requires these finite-rank operators
to leave an arbitrary nest of closed subspaces invariant. Section 3 provides
a precise definition of invariant nests and in Section 4 we will properly
introduce both properties and give a precise definition of them.

This approach towards generalizing the trace equation is motivated by
an article by Erdos [5], in which he gives a proof of Lidskii’s theorem
different from the one described above. In his proof, Erdos uses results
from a paper by Ringrose [20] to decompose compact operators into a
normal and a quasi-nilpotent part. He then shows that the trace equation
is satisfied for trace-class operators. This is done in two steps. First,
Erdos proves that quasi-nilpotent trace-class operators have trace equal to
0. This is done by considering an approximation of the identity operator
by finite-rank operators that leave a specific nest of subspaces invariant,
which very much resembles the nest approximation property we discuss!
Then the proof is concluded by computing the trace of the normal part
of the decomposition, which is a trivial computation using the spectral
theorem. This approach towards proving Lidskii’s theorem is based on
Ringrose’s construction of invariant nests and the analysis of how compact
operators act on them. In Section 3, we will go through this construction
in detail and we will see that the result we obtain looks very much like an
upper triangular matrix. Hence Erdos’ proof is more or less a generalization
of the proof for matrices using the Jordan normal form.

The goal of this thesis is to prove the equivalence between the Lidskii
property and the nest approximation property, where we follow the proofs
of Figiel and Johnson [6]. In the first half of this thesis, we will classify
a suitable class of operators on which we can define a trace, the nuclear
operators, and prove that this trace is well-defined if and only if the space
they are acting on satisfies the approximation property. Therefore, we will
first study the approximation property in Section 1, as it will play a promi-
nent role in the rest of this thesis. We will encounter two characterizations



of the approximation property and we will prove that these are equivalent.
In Section 2, we will construct a trace on the nuclear operators and prove
that this trace is well-defined. To do this we will need to introduce the
topology of uniform convergence on compact sets (ucc-topology). It will
turn out that this topology is intimately connected to one of the charac-
terizations of the approximation property from Section 1. Furthermore, we
will characterize all linear functionals that are continuous with respect to
the ucc-topology and find that they have striking similarities with the nu-
clear operators. Exploiting these similarities will allow us to prove that the
trace we want to define on the nuclear operators is well-defined whenever
the Banach space they are acting on satisfies the approximation property.
The second half of this thesis is also divided into two sections. In Sec-
tion 3 we will introduce nests of subspaces, which we will use to generalize
the concept of diagonal coefficients from matrices to compact operators.
We will study the main part of the construction in Ringrose’s paper [20],
which we have already mentioned, to prove a theorem that relates the di-
agonal coefficients of a compact operator to its eigenvalues. We will see
that this creates a sort of analogy to upper triangular matrix representa-
tions of linear operators on finite-dimensional spaces. Finally, in Section 4,
all the extensive theoretical preparations of the first three sections will be
put to use in proving the equivalence of the Lidskii property and the nest
approximation property.

In this thesis, we focus on the equivalence between the two properties.
It is of course also interesting to discuss examples of Banach spaces, other
than Hilbert spaces, that satisfy both of these properties, but this is beyond
the scope of this thesis. There exists an article, published by Johnson and
Szankowski in 2014 [10], in which they introduce a class of Banach spaces
called I'-spaces and prove that these satisfy the Lidskii property, but this
is certainly not trivial.



1 Multiple characterizations of the approx-
imation property

In the first section, we will look at the approximation property for Banach
spaces and discuss multiple characterizations of it. In this section, unless
stated otherwise, X and Y will be complex Banach spaces with norms
| - [|x and || - ||y respectively. However, the subscripts may occasionally
be dropped to improve readability. The space of linear operators from Y
to X will be denoted by L(Y,X). For a linear operator T' € L(Y, X),
we define the operator norm ||T'|| = sup,ey, |, <1 [|7|| and the space of
bounded operators B(Y,X) = {T" € L(Y,X) : ||T]| < oo}. A standard
result from functional analysis is that the operator norm really is a norm
on B(Y,X) and that (B(Y,X),| -||) is complete if (X,| - ||x) is. The
only topologies considered in this section are the topologies generated by
the open balls of the Banach norms and the operator norm. Closures in
these topologies will be denoted by A for any subset A of these spaces.
With these topologies on the Banach spaces, B(Y, X) is precisely the space
of continuous linear operators from Y to X. Furthermore, we denote the
space of compact operators from Y to X as K(Y,X) and the space of
finite-rank operators from Y to X as F (Y, X). For any of these operator
spaces, we omit the Y in the notation if ¥ = X. Since any compact
operator is bounded, any finite-rank operator is compact and the space of
compact operators is closed in the space of bounded operators, we have
the following inclusions, ordering the above-mentioned operator spaces:
FY,X) Cc F(Y,;/ X) c K(Y,;X) € B(Y,X) C L(Y,X). Where we use

the symbol C for nonstrict inclusion.

1.1 The approximation property

In existing literature, there are multiple ways in which the approximation
property is defined. The one we will use is in line with Megginson [15,
p. 330]. However, for example Lindenstrauss and Tzafriri [13, p. 30] and
Grothendieck [8, p. 165] use a different definition. The main goal of this
section will be to prove Theorem 1.2, which states that these definitions are
equivalent. This was first proven by Grothendieck [8] in 1955. In Section
2, we will encounter other characterizations, for which we need some more
theory to formulate them.

Definition 1.1. A Banach space X has the approzimation property (AP),

if for every Banach space Y, the following holds: F(Y, X) = K(Y, X).

Theorem 1.2. Let X be a Banach space. Then the following are equiva-
lent:



1. X has the approzimation property.

2. For every compact K C X and every € > 0, there exists some Tk €
F(X) such that | Tk .cx — x| < € for all z € K.

Both Megginson [15, Theorem 3.4.32] and Lindenstrauss [13, Theorem
1.e.4] also give proofs of this, however Lindenstrauss’s proof only applies to
real Banach spaces. Megginson made some modifications to this proof to
also include complex Banach spaces. Therefore, we will follow Megginson’s
proof in this section. We can prove the implication 2 = 1 immediately.
For the converse implication, we need to do more work. It will be proven
at the end of Section 1.

Proof of Theorem 1.2, 2 = 1. Suppose 2 holds, so for every compact
K C X and every € > 0, there exists some Tk, € F(X) such that
|Tkex — z|| < € for all z € K. We need to show that for any Banach
space Y, we have that F(Y, X) is dense in K(Y, X). Let Y be an arbitrary
Banach space and let A € K(Y,X) be an arbitrary compact operator.
Furthermore, let By be the closed unit ball of Y. Compactness of A im-
plies that K = ABy is compact in X. By assumption, there exists a
sequence {7, }nen C F(X) such that ||T,2 — z|| < £ for all 2z € K and
n € N. Now consider the sequence {A,, },en defined by A,, = T,,A. We see:
[An = All = supyey, <1 14y = Ayll = supyey, 1< 1TnAy — Ayll <
as Ay € K for all y € Y such that |jy]| < 1. Soas 4, - Aasn — o
in the operator norm and A, € F(Y,X) for all n € N, it follows that
Ae F(Y,X), hence K(Y,X) C F(Y, X). As the converse inclusion always
holds, we have equality and thus X has the AP by definition. O]

1.2 Convex, balanced and absorbing sets

From now on, we assume F € {R, C}. If V is a topological vector space over
Fand ACV,z €V and a € F then we define: x + A={zx+y:yec A}
and oA = {ay : y € A}. Furthermore, if V is a normed space, we denote
the closed ball of radius 7 centered at = by B,(z).

Definition 1.3. Let V' be a topological vector space and let A C V, then:

1. Ais convez if for all 2,y € Aand ¢ € [0, 1] we have that tz+(1—t)y €
A.

2. A is balanced if for every o € F such that || < 1, we have a4 C A.

3. A is absorbing if for every x € V, there exists some s, > 0 such that
for all ¢t > s, we have x € tA.

4. The convez hull of A, denoted by co(A), is the smallest convex set
containing A, so the intersection of all convex sets containing A.
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5. The closed conver hull of A, denoted by €o(A) is the intersection of
all closed convex sets containing A.

Some immediate consequences of these definitions are summarized in
the next propositions.

Proposition 1.4 ([15, p. 3]). In a topological vector space:

1. Arbitrary intersections of conver sets are convez (so the definition of
the (closed) convexr hull indeed gives a convex set).

2. Arbitrary unions and intersections of balanced sets are balanced.

3. Scalar multiples of convex sets are conver and scalar multiples of
balanced sets are balanced.

4. The closed convex hull of any set is closed.
Proposition 1.5. Let V' be a normed space, then:

1. If C C V is convex, so is C.

2. If B CV is balanced, so is B.

Proof. 1. Let x,y € C and t € [0,1]. As x,y € C, there are sequences
{zn}nen and {y, }nen in C converging to x and y respectively. Since C' is
convex, we have tx, + (1 — t)y, € C for all n € N. By letting n — oo we
see tr + (1 —t)y € C. So C is convex.

2. Let a € Fsuch that |a] < 1and z € B. Asz € B, there is a sequence
{Zn}nen in B converging to z. Since B is balanced, we have az, € B for
all n € N. By letting n — oo we see ax € B, hence aB C B. So B is
balanced. 0

Proposition 1.6. Let V be a normed space and A C V', then:

1. ©o(A) =co(A)
2. co(A) = o (A)

Proof. 1. Since A C A C ©o(A) and co(A) is closed and convex, we have

co(A) C ©o(A) by definition of the closed convex hull. Conversely, since
A C co(A) and co(A) is closed, we have A C @(A). Now, since co(A) is

closed and convex, by definition, we have ¢6(A) C ©(A). So combining
both inclusions gives co(A) = co(A).

2. We have A C co(A4) C co(A) and by Proposition 1.5 co(A) is closed
and convex. So by definition ¢6(A) C co(A). Conversely, since A C ¢6(A)
and ¢o(A) is convex, by definition we have co(A) C @(A) and as the latter
is closed, this yields co(A) C €(A). So combining both inclusions gives
co(A) =co(A). O



Proposition 1.7. Let V' be a normed space and A C'V and define

N N
C::{Ztnxn:NeN, T € A, t, >0, Ztn:1}.

n=1 n=1
Then C = co(A).

Proof. We need to prove that C'is the smallest convex set containing A. For
all z € A, we have that x is a convex combination as in the definition of C'.
It follows that x € C', hence A C C. Furthermore, C'is convex; let z,y € C
and t € [0, 1], since z,y € C we can find N, M € N, elements z,,y,, € A
and positive real numbers 7, s, € [0,1] for all n € {1,..., N} and m €
{1,..., M} such that we can write x = Y0 r,z, and y = S0 8, 0m.
Then tz+(1—t)y = S0t + 527 (t—1)8mYm is a linear combination
as in the definition of C, so tx + (1 — t)y € C implying that C is convex.
It is left to show that C'is the smallest convex set that includes A. Now
suppose (' is a second convex set including A, we are done when we prove
that C' C Cy. So let Zgzl t,z, be an element of C, we want to prove that
ZnN:l tp,x, € Ci;. We proceed by induction on N. Note that for N = 1
the claim is trivial, as C; contains A. Now let NV > 1 and suppose that all
linear combinations in C' of the form Zg;ll t,x, are in Cy. Let Zivzl thn
be an element of C' and without loss of generality, we can assume that
t, # 0 for all n € {1,...,N}. Define T' = Ziv:_ll tn, =1 —tx # 0, then by
the induction hypothesis, we have T} Zi\[;ll t,x, € C7 and as C includes
A, we also have xy € C}. So by convexity of C, we have that 25:1 thy =
TT-1 22:11 thtpttnyey = (1—ty)T 71 Zi\:ll tnn+tyry € O, completing
the induction. O

Proposition 1.8. Let V' be a normed space over F and A C V' a balanced
set, then:

1. Ifa € F and |o| =1, then aA = A.
2. co(A) is balanced.

Proof. 1. Let A C V be balanced and suppose |a| = 1. By definition of a
balanced set, we have A C A. As a € F and |a| = 1 we have a™! € F
and |a~!'| = 1, so by definition of a balanced set, we also have a™'A C A,
hence A C aA. Combining both inclusions gives a A = A.

2. Let © € co(A) and a € F with |o| < 1. Since x € co(A), we can
find a linear combination as in Proposition 1.7 such that x = ij:l thn.
Since A is balanced, we have ax, € A for all n € {1,...,N}. So az =
SN tna, is a linear combination as in Proposition 1.7, so ax € co(A).
Hence aco(A) C co(A), so co(A) is balanced. O



Combining Propositions 1.5, 1.6 and 1.8, we can formulate the following
corollary:.

Corollary 1.9. Let V' be a normed space and A CV a balanced subset.
Then the following sets are also balanced: A, co(A) and co(A) = co(A) =

w(4).

In the proof of the second implication of Theorem 1.2, compact convex
hulls will turn out to be very useful. Therefore, we wish to relate the
compactness properties of a set A to the compactness properties of its
convex hull, for this we will use Mazur’s compactness theorem.

Theorem 1.10 (Mazur’s compactness theorem). Let X be a Banach space
and suppose K C X is compact, then ¢6(K) is compact.

A proof of Mazur’s compactness theorem can be found in [15]. However,
as it relies on lemmas that prove compactness properties of the (closed)
convex hull more generally in both the norm and weak topology, it is un-
necessarily complicated for our purposes. However, Conway [2, Theorem
4.8] presents a much simpler proof that works for the norm topology. We
can reformulate the contents of Mazur’s compactness theorem in terms of
precompact sets.

Theorem 1.11. Let X be a Banach space and suppose A C X is precom-
pact, then co(A) is precompact.

Proof. If A is precompact, then by Mazur’s compactness theorem, co(A) is
compact. So by Proposition 1.6, co(A) = €o6(A) is compact, hence co(A) is
precompact. ]

We saw that given any subset A of normed space V, we can extend
this subset to a convex set by looking at the convex hull of A. Moreover,
if V' is complete and A is precompact, then Mazur’s compactness theorem
ensures that this convex hull is precompact too. In a similar fashion, we
would like to extend a subset to a balanced subset of V' while preserving
precompactness.

Proposition 1.12. Let V' be a normed space over F and A C V', then the
set

B:=|J{aA:a €T, |o| <1}
is balanced. Furthermore, if A is precompact, so is B.

Proof. To prove B is balanced, we need to show B C B for all g € F
such that |f] < 1. Let § € F be arbitrary such that |3] < 1 and let
y € B. Then by definition of B, there exist v € F such that |y| < 1
and x € A such that y = yx. So fy = fyx € B as |Bv| = |6||y] < L.
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So B is balanced. Now suppose A is precompact. We prove that B is
precompact by showing all sequences in B have a convergent subsequence.
Let {yn}nen C B. Then for all n € N there exist a,, € F and z,, € A such
that |a| <1 and y,, = a,x,. Since A is precompact and {a € F : |a| < 1}
is compact, there exists a subsequence {y,, tren such that both {an, }ren
and {z,, }ren are convergent, so {y,, tren is convergent as product of two
convergent sequences. It follows that B is precompact. O

Before we move on to finish the proof of Theorem 1.2, we need a few
more technical results, relating precompact sets to the closed convex hull
of sequences converging to 0. These come straight from Megginson [15].
However, the proofs given here are more detailed.

Proposition 1.13 ([15, Lemma 3.4.29]). Let X be a Banach space, {xy}nen
a sequence converging to 0 and let H C T be either {1} or the closed ball
with radius p, centered at 0. Then

co({ax, :a€ HneN}) = {Ztnanasn:tn >0, a, € H, Ztn < 1},

neN neN
and this closed convex hull is compact.

Proof. Define C' = {ZneN tnOn Ty ity >0, ap € H, Y- 1n < 1} and R =
max{1,p}. C is well-defined as {z,}nen and {a,}nen are bounded and
{tn}nen is absolutely summable. For all « € H and n € N, we have that
ax,, is a sum as in the definition of C, therefore {ax, : « € H,n € N} C C.
We first prove that C is closed and convex.

For convexity, let z,y € C and ¢t € [0,1]. Then we can write x =
ZneN TnfBntn, and y = ZneN SnYnTn, Where these are sums as in the defi-
nition of C. Then tx 4+ (1 —t)y = >, .8y + (1 — t)8,V5)2n. To prove
convexity, we need to prove that this is a sum as in the definition of C'. If
t =0,t=1or H= {1}, this is clear. So suppose t € (0,1) and H is a
closed ball of radius p, centered at 0. Proving this is a sum as in the defi-
nition of C' means that for all n € N we must find u,, > 0 and §,, € H such
that > yun < 1and tr,B, + (1 —t)s,yn = updy. I tr, +(1—1)s, =0, it
follows that r,, = s,, = 0 since t and 1 — ¢ are strictly positive. Put u,, =0
and 9, = 0 € H, then tr, B, + (1 —1)$,7n = 0 = u,d,. If tr, +(1—1t)s, # 0,

put u, = tr, + (1 —t)s, and §, = trant=t)sntn - Gipce

Un

‘5 | _ trnﬁn + (1 - t)sn%z < trn|5n| + (1 - t)5n|'7n|

Unp Unp

< trop+ (1 —t)spp _ Unp )
Unp, Un,

11



it follows that 6, € H. As > _un =Y cntrn + (1 —1)s, < 1, we have
that to + (1 — 1)y = Y, cny Un0ny € C, s0 C'is convex.

For closedness, let y € C, so there exists a sequence {y™},,cn such
that y™ € C for all m € N and y™ — y as m — oco. As y™ €

C we can write y™ = Y neN ti™ o™z, where these are sums as in the

definition of C. For fixed n € N this yields two sequences {t%m)}meN C
0,1] and {&™}men C H. As both [0,1] and H are compact, we can
find a subsequence {y™)},cx such that {tgm’“)}keN converges to some t; €
[0,1] and {Ozlmk)}keN converges to some a3 € H. As the same argument
now applies to the sequences {tém’“)}keN C [0,1] and {agm’“)}keN C H, we
can find a subsequence {y™)},cy such that {t;m'”)}leN converges to some
ty € [0,1] and {agmkl)}leN converges to some ap € H. By repeating this
argument inductively N times, we obtain a subsequence for which the first
N pairs of coefficients converge. Now we can make N arbitrarily large.
This yields two sequences {t, }nen C [0,1] and {a, tnewy C H, where each
t, and a,, are inductively defined in the same way as 1, ts, @1 and as. Put
Y = ,en tnOn @y, we will prove that y = ¢ and y' € C. To prove y' € C'it
is only left to prove that ZneN t, < 1. For N € N, consider Ty = ZnNzl t,.
By construction, there exists a subsequence {y™)},cy such that the first
N coefficients ¢+ converge to t¢,,. This implies that

N N
Ty = Ztn = lim ) #"™) <1 VYNeN.
n=1

k—o0 "
n=1

So by taking N — oo, it follows that ) _t, < 1, hence y € C. We
prove that y = 3/ by showing that ||y — ¢/|| = 0. For this, pick € > 0 and
M € N such that sup,,, [|z,|| < ;5. By the same argument as before, we
can find a subsequence {y"*)},cy such that the first M pairs of coefficients
converge to t, and «,, for all n < M. Then we have

ly' =y ™0 <Y llzallltncn — ™ al™)|

neN

M [e'9)
= allftnan = t7al™) [+ 3" flaa|ltac — " alm)|
n=1 n=M-+1

M [e%)
<3 alltucn = 8700+ D7 R+ 1)

n=1 n=M+1

M

m m €

< Z [z l[tncen — t1(1 k)O‘q(z k)| + bY
n=1

As the first M pairs of coefficients converge, there exists a K; € N such that
for all k£ > K; the first term of the right-hand side of the last inequality is
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less than £. So for all k > K7, it follows that ||y —y™)|| < e. As {y™) }yen
is a subsequence of {y(™},.cn, it also converges to y. This implies there
exists a Ky € N such that for all & > K we have that ||y—y™)|| < €. So for
K =max (K1, K3), it follows that ||y —y|| < [|y/ =y ||+[ly—y™<) || < 2e.
As this applies to all € > 0, we have y = ¢ € C' and therefore we conclude
that C is closed.

So C is a closed and convex set containing {ax, : @ € H,n € N},
to prove C' = co({ax, : @« € H,n € N}) we need to prove that it is
the smallest of such sets. So let C] be a closed and convex set such that
{ax, : « € Hn € N} C ;. We need to prove that C C Cy. Note
that since C is closed, we have 0 € Cy. So let y = ZneN thonx, € C

and define yy = 25:1 thon®,. With T = 27]:[:1 t,, we see that yy =
(1-T)0+ ij:l thon, € C1 as this is a convex combination of elements
in (. So since yy — y as N — oo and (' is closed, this implies y € C}.
Hence we have that C' C (', proving that C' is the desired closed convex
hull.

It is left to prove that C is compact. As {z,},en converges to 0, the
set {z, : n € N} U {0} is compact as any cover of open sets contains a
finite subcover. Hence {z,, : n € N} is precompact. By Proposition 1.12, it
follows that {ax, : « € H,n € N} = {J, .y o{x, : n € N} is precompact,
too. So by combining Mazur’s compactness theorem and Proposition 1.6, it
follows that C' = co({ax, : « € Hyn € N}) =co ({owcn ca€ Hne N})

is compact. O

Proposition 1.14 ([15, Lemma 3.4.30]). Let X be a Banach space and
A C X precompact. Then there exists a sequence {xp}nen C X converging
to 0 such that A C co({z,, : n € N}).

Proof. If A = (), there is nothing to prove, so assume A # () and A is
precompact. Since non-zero scalar multiplication is a homeomorphism,
2A is also precompact, hence totally bounded. This implies that we can
find {z1,...,2,,} C 24 such that 2A C UJ}L, E% (z;). Now define A; =

Ui, ((QAQE% (z5)) —xj>. Since for all j < ny, we have that 2A N
F% (x;) C 2A, it follows that 24 N E% (x;) is precompact too. Since trans-

lation is a homeomorphism, we have that (24 DE% (x)) — x; is precompact
for all 7 < n; and thus A; is precompact as finite union of precompact
sets. Furthermore we see that A; C B 1 (0) and as A # () we also have

Ay # (. So we can repeat this procedure with A;, therefore there are

{Tnis1s s Ty} C 24, such that 24, C U2, |, B%Q(xj) and we define

Ay =U2, ((2A1 N FQ% (x;)) — a:j). Now Aj is precompact, non-empty

and A, C B il (0). We can continue this construction. Notice that by every
2
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iteration, the radius of closed balls decreases by a factor of % This yields the
sequence {x, }nen, which converges to 0 as Ay C E%(O) for all k € N. We
2

prove that A C @o({z, : n € N}) = {3, cntan 1 80 >0, 3yt < 1},
where the equality follows from Proposition 1.13. Suppose that x € A, by
construction there exists a j; with 1 < j; < ny such that 2z —z;, € Ay, so
we can find an integer j, with n; +1 < j, < ny such that 4z — 2z, —x;, =
2(2x — x;,) — x;, € Ao, and so forth. After m iterations and dividing by
2™ we have that

r—) 27"z, €27"A, C B4 (0),
n=1

After taking the limit as m — oo, it follows that x = > 7 27"x; €

n=1
co({x,, : n € N}), which finishes the proof. O

Proposition 1.15 ([15, Lemma 3.4.31al). Let X be a Banach space. Then

A C X is precompact if and only if there exists a sequence {xy}nen C X
converging to 0 such that A C co({z, : n € N}).

Proof. If A C X is precompact, then by Proposition 1.14 there exists a
sequence {Z, fnen C X converging to 0 such that A C co({z, : n € N}).
Conversely, if there is a sequence {z,},en C X converging to 0 such that
A c @({z, : n € N}). Then by Proposition 1.13, A is a subset of a
compact set so A is precompact. ]

1.3 Proving the second implication

In the previous subsection, we discussed properties of convex and balanced
sets. Furthermore, we looked at (closed) convex hulls, particularly those of
sequences converging to 0. In this section, we will use these to prove the
forward implication of Theorem 1.2. The strategy for the proof will be to
pair every compact K C X with a suitable Banach space Y which, as set,
is a subset of X. Furthermore, we want to construct Y in such a way that
K is contained in the unit ball in Y and such that the identity map from
Y into X is compact. Then we will see that the approximation property
allows us to uniformly approximate the identity map of X on compact sets
by finite-rank operators. For the rest of this section, if S is a subset of a
vector space V', we denote the linear span of S by span(.S).

Definition 1.16. Let V' be a vector space and A C V be an absorbing
subset. Then the Minkowski functional of A, denoted by p4, is defined as
pa(x) =inf{t: ¢t >0,z € tA} forall z € V.

Remark. We require A to be absorbing such that {¢ : ¢ > 0,z € tA} is non-
empty for all x € V. Hence pa(x) is finite, real-valued, and nonnegative
forall z € V.
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Definition 1.17. Let V be a vector space, a function f : V — R is
positive-homogeneous if for all ¢ € R such that ¢ > 0 and all x € V, we
have that f(cx) = cf(x). We call f sublinear if for all z,y € V we have

that f(z +y) < f(z) + f(y).

Proposition 1.18 ([15, Proposition 1.9.14 a]). Suppose that V is a vector
space and A C'V is an absorbing set. Then:

1. py is positive-homogeneous and A C {x € V : pa(z) < 1}.

2. If A is convex, then pa is sublinear and {x € V : py(x) < 1} C A.
3. If A is both convex and balanced, then py is a seminorm on V.
Using the Minkowski functional, we can construct new Banach spaces.

Proposition 1.19 ([15, Lemma 3.4.38]). Suppose X is a Banach space
over F and S C X is nonempty and precompact. Define

K5:®<U{aS:OzEIF,\a| < 1}),
and let Y = span(Kg). Then:

1. Kg is compact in X and S C Kg.

2. The vector space Y has a Banach norm || - ||y such that Kg is the
closed unit ball in (Y, || -|lvy).

3. The inclusion/identity map from'Y into X is compact.

Proof. 1. Write B = |J{aS : a € F,|a| < 1}, then by Proposition 1.12,
B is balanced and precompact. So we see that Kg = co(B) = co(B)
by Proposition 1.6 which is compact by Mazur’s compactness theorem.
Furthermore, we have that S C B C @6(B) = K.

2. As B is balanced, Ky is also balanced by Corollary 1.9. Moreover,
K is obviously convex. Kg being balanced and convex also implies that
Ky is absorbing in Y. Suppose that y € Y, we will prove there exists s, > 0
such that for all ¢ > s,, we have that y € tKg. Note that since 0 € Kg,
it follows that for all £ > 0 we have that 0 € tKg. So if y = 0, we can
take s, = 0 and we are done. Now suppose y # 0. Since Y = span(Kg),
we can write y = 25:1 any, for some N € N, a,, € F and y, € Kg.
Since y # 0, we can assume that N # 0 and «a,, # 0 for all n such that
1 <n < N. We define M = maxj<,<py |a,| and since Kg is balanced,
we have that §%y, € Kg for all n such that 1 < n < N. Now since Ky

is convex, it follows that %; = 25:1 NiiYn € Kg, hence y € NM - K.

Now put s, = M N and suppose that ¢t > s, = NM. By convexity of Kg

it follows that ¥ = @% + (1 - @)O € Kg, hence y € tKg. So Kg
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is absorbing. Now define ||y|ly = pk4(y) for all y € Y, where pg, is the
Minkowski functional of Kg. By Proposition 1.18 this is a seminorm on Y.
However, if y € Y and y # 0 we have that ||y|ly > 0. Suppose not, then
by definition of the Minkowski functional, we obtain a sequence {t,}en
of positive numbers converging to 0 such that ¢ 'y € Kg for all n € N.
However, this implies that Kg is unbounded with respect to || - ||x, which
contradicts the compactness of K¢ C X. It follows that || - ||y is a norm on
Y.

From the first part of Proposition 1.18 it follows that K is contained
in the closed unit ball of (Y, || - |ly). Conversely, suppose y € Y \ K.
Since Ky is closed, we can find an € > 0 such that the open ball of radius
e centered at y with respect to || - ||x is disjoint with Kg, where we can
assume that € < ||y||x. Now take ¢ > 0 such that y € tKg, since tKg C Kg
for all ¢ < 1 it follows that ¢ > 1. As ¥ € K, we have that ||y — Y[|x > ¢,

hence 1—¢ > i So it follows that ¢ > ”Eﬁlx_ - > 1. By taking the infimum

over all such t, we see that ||y|ly > 1, so y is not contained in the closed
unit ball of (Y, ||-|ly), completing the proof that Kg is the closed unit ball
of (Y, [ - [ly).

The only thing left to prove is that (Y, ||-||y) is a Banach space. In the
rest of this proof, we will write By instead of K if we refer to Kg as subset
of Y and just Kg when we mean Kg as subset of X. Since Kg is bounded,
there exists a K > 0 such that ||z]|x < K for all x € Kg. Now suppose
y €Y andy # 0, then 4 € By = K, hence |15 < K so [ly]x < K|ylly
and this identity obv1ously extends to the case that y = 0. Now suppose
(Y, |l - |ly) is not Banach, so there exists a nonconvergent Cauchy sequence
in Y, say {v,}nen. By rescaling, we can assume this Cauchy sequence to
be in By. By the inequality we have just proven, it follows that {v, },en
is also a Cauchy sequence in X and lies in Kg. So by compactness of
Kg, it follows that {v,},en has a limit v € Kg. Define w, = v, — v,
then {wy, fren converges to 0 in X and is a nonconvergent Cauchy sequence
in Y. So there exists a § > 0 and a subsequence {wy,}jen such that
|wn,|ly > 0 for all j € N. Consider the sequence {z;};en defined by
zj = |Jwn, ||y wn, . As [|zj]lx < 07wy, ||x it follows that {z;};en converges
to 0 in X. Furthermore

| wa, Wy, [[wn, ([[wng ly) = wn, (lwn, llv) 1y
12 — zilly = > 5
lwnlly — Twa, [y |l )
[|wn, ( ‘wnJHY) wnz( W, ||v) 4 W, (||wn, [|y) _wnj(me vlly
— 5
- (1w, 1y Hwn, Iy = llwn, v | 4 lwn, ly [[wn, — wa,lly)
< 52
<2||wni Yme _wnj”Y

= 52 )
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where we used the reverse triangle inequality for the last step. As {wp, }ien
is bounded, we conclude that {z;};ey is Cauchy in Y. So there exist an
integer jo € N such that for all 7, j > jo, we have that ||z; — z|ly < 3. So
for all j > jo, it follows that [|2(zj, — z;)||y < 1 s0 2(z;, — 2;) € By = K.
So as z; — 0 in X and Ky is closed in X it follows that 2z;, € K¢ = By,
s0 ||zj,|ly < 3 which contradicts ||zj|ly =1 for all j € N. So (V.| - [ly) is
complete.

3. The identity map from Y into X maps the closed unit ball By in Y
to the compact set Kg in X, therefore it is a compact map. O]

Corollary 1.20. Let X be a Banach space and let S C X be nonempty
and precompact. Let'Y be the Banach space as constructed in Proposition
1.19. Then the identity map from 'Y into X s continuous, hence bounded.
In other words, there exists a positive constant C' such that ||y||x < C|ly|ly
for all y € Y, furthermore we can assume that C' < max,ek, ||| x

Proof. Continuity of the identity map follows directly from the fact that the
identity map is compact. The bound on C' is found by the same argument
as used in the proof of Proposition 1.19. O

Corollary 1.21. Let X be a Banach space and let S C X be nonempty
and precompact. Let'Y be the Banach space as constructed in Proposition
1.19. If the sequence {yy, }nen converges to 0 in'Y', then it also does in X.
Furthermore, if H is defined as in Proposition 1.13, then the closed convex
hull c6({ay, : « € H,n € N}) is the same in both spaces.

Proof. By continuity of the identity map from Y into X, it follows that
{Yn }nen also converges to 0 in X. So we can apply Proposition 1.13 both
to {yn}nen as a sequence in X and as a sequence in Y and see that the
closed convex hull is independent of the space. O

Now that we have seen how we can construct Banach spaces from pre-
compact sets, we only need a couple more results to prove the second
implication of Theorem 1.2.

Proposition 1.22 ([15, Lemma 3.4.31b]). Suppose X is a Banach space
and A C X is precompact. Let {x,}nen be as in Proposition 1.15. Then
there exists a compact subset S C X such that co({z, : n € N}) C S and
{Zn}nen also converges to 0 in'Y', where Y is the Banach space constructed
from S as in Proposition 1.19.

Proof. Suppose A C X is precompact and {x,},en is as in Proposition
1.15. From the formula for the closed convex hull found Proposition 1.13
it follows that elements z,, = 0 do not affect the shape of the closed convex
hull, therefore we may assume x,, # 0 for all n € N. Define y,, = ||xn||;(1/ T

if ||znllx < 1 and y, = x,, otherwise. Then {y,},en converges to 0 so
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{Yn}nen is precompact, therefore S = c({y, : n € N}) is compact by
Mazur’s compactness theorem. If ||x,|x > 1, we have that z, =y, € S
and if ||z,]|x < 1 then z, = ||:)3n||;</2yn € S as S is convex and 0 € S.
So as {x, : n € N} C S and since S is closed and convex, it follows
that ¢o({z, : n € N}) € S. Now let (V.| - |ly) be as in Proposition
1.19 and denote the closed unit ball in Y as By. If ||z,|x < 1 then
|2l %20 = yn € S C By, hence ||z, ||y < ||za||¥? and therefore {z, }nen

also converges to 0 in Y. [

The last step before we can prove the forward implication of Theorem
1.2 is to show that if Y is a Banach space as constructed in Proposition
1.19, we can approximate the bounded functionals of Y sufficiently well by
bounded functionals of X. For this, we will need the so-called separating
hyperplane theorem. From now on, if X is a normed space, we denote the
dual space of X by X*.

Theorem 1.23 (separating hyperplane theorem, [19, Theorem V.4]). Let
X be a Banach space over F. Let A and B be disjoint convex sets in X. If
A is compact and B is closed, there exists a linear functional ¢ € X* and
a real number b, such that R(p(z)) < b for all x € A and R(p(x)) > b for
all x € B.

Lemma 1.24. Let X be a Banach space and K C X compact. Let § > 0
and let {x, }nen and S be as in Proposition 1.22. LetY be the Banach space
constructed from this S as in Proposition 1.19. Then for every bounded
functional y* € Y* there exists a bounded functional x* € X* such that
ly*x — z*x| < 6§ forallz € K.

Proof. Let y* € Y* be a bounded functional. By Proposition 1.22 it follows
that {z, }nen also converges to 0 in Y. As y* is continuous, we have that
{y*x, tnen converges to 0. This implies there exists an nyg € N such that
ly*x,| < g for all n > ng. Let

K, = 20""co({az, : a € F,|a] < 1,n > ne}).

By Corollary 1.21, K, is well defined in the sense that it makes no dif-
ference in which space we take the closed convex hull. Furthermore, by
Proposition 1.13 it follows that K, is compact. Define

C:={y € span(zy, ..., vy,) : R(y"y) = 1}.

We claim the following: C'is closed in Y and X; C'is convex; we can assume
C' to be nonempty and C' and K,,, are disjoint. To prove C'is closed in Y,
let y € C such that there is a sequence {y, },en in C converging to y. Then
it follows that R(y*y) = lim, o, R(y*y,) = 1, hence y € C. So C'is closed
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in span(xy, ..., x,,) as a subspace of Y and as this is a finite-dimensional
subspace and hence closed, this implies C' is closed in Y. Since finite-
dimensional topological vector spaces have a unique Hausdorff topology, we
can also view span(xy, ..., Z,,) as a finite-dimensional subspace of X so by
the same argument it follows that C' is closed in X. Now pick z,y € C' and
t € R, then it follows that R[y*(tx+(1—t)y)] = tR(y*2)+ (1 —-t)R(y*y) = 1
implying that tz+(1—t)y € C for all z,y € C and t € R. In particular, this
holds for all ¢ € [0,1] implying that C' is convex. Now suppose that C' is
empty, this happens if and only if span(zy, ..., z,,) C ker(y*). Let z* € X*
be the zero functional and let x € K C ¢o({x,, : n € N}). By Proposition
1.13 it follows we can write x = > _t,2, with ¢, > 0 for all n € N and
> nen tn < 1, then we have that |y*z — 2*z| = |y* x| = Y ., taly*7,| < g
We see that x* = 0 works, therefore we can assume that for at least one n
such that 1 < n < ng we have that y*x,, # 0 and hence C' is nonempty. To
prove C' and K, are disjoint, we pick an element y = 26!z € K, such
that z € co({ax, : a € F,|a| < 1,n > ng}). By Proposition 1.13 we can
write x = Zn>n0 tpon®, with ¢, >0, [a,| < 1and ) t, < 1. It follows
that [y*y| = 207y x| < 207" 37 o, talonlly*en| < 32, talan| < 1. So
for all y € K,, it follows that R(y*y) < |y*y| < 1 hence y ¢ C. The
converse argument is the same, so it follows that C' and K, are disjoint.

This means that we can apply the separating hyperplane theorem to C'
and K, to obtain a real number b € R and a bounded functional z* € X*
such that R(z*z) < b for all z € K,, and R(z*x) > b for all x € C.
However, as for all z,y € C and t € R we have that tx + (1 — t)y €
C, it follows that Rx* must be constant on C. Suppose z,y € C and
R(z*z) # R(z*y), then the map ¢ — tR(z*x) + (1 — t)R(z*y) is surjective
on R, implying that Rz*(C') = R, contradicting the existence of b. As
0 € K,, it follows that 0 € Ra*(K,,), so Rz*(C) # 0. By rescaling we
can therefore assume that Rz*(C) = 1 = Ry*(C). We claim that this
implies that x*z = y*x for all z € span(zy,...,x,,). First suppose that
x € span(xy, ..., Tn,) and that R(y*z) = r # 0, then it follows that

R(y*x) = ;ER(y*:U) =rR (y* (£)> =rR (x* <£>> = R(z"x).

r r

Now suppose that R(y*z) = 0 and let z € C, then it follows that

R(z*z) =R(@z"(z+ 2 —2)) = R(@"(x + 2)) — R(z"2)
=Ry (x+2)-Ry2) =Ry (r+2—-2) =0

This means that for all z € span(xy, ..., x,,) we have that R(z*z) = R(y*z).
Now, this also implies that

S(z'r) = Rz (—ix)) = Ry (—iz)) = S(y*z),
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and therefore it follows that z*x = y*z for all z € span(zy,...,x,,). In
particular, it follows that z*x, = y*x, for all n such that 1 <n < ny.

By Corollary 1.9, K,,, is balanced. Let n > ng and let u,, be defined
by z*z, = |z*z,|u, where we put u, = 1 if z*z, = 0. Since K, is
balanced and |u,| = 1 for all n > ny, it follows from Proposition 1.8 that
for all n > ng we have that 20 'z,u,' € K,,. Hence it follows that
20 Harz,| = 207 " (zu, ) < Re*(C) = 1 and thus that for all n > ny
we have that |2*z,| < £. Now, if # € K there are nonnegative numbers ¢,
such that ) ¢, <land x =) _t,z,. It follows that for all z € K

Z to(z 2, — Yy xy)

neN

<ty (|27 aa] + |y zal) < 6.

n>no

lz*x — yx| =

]

Proof of Theorem 1.2, 1 = 2. Let X be a Banach space and suppose
that X has the approximation property. We need to prove that for every
compact K C X and e > 0 there exists a finite-rank operator Tk, €
F(X) such that ||Txx —z|] < € for all x € K. So let K C X be an
arbitrary compact subset and let € > 0. Let {z,}ney and S C X be as
in Proposition 1.22. Let Y be the Banach space constructed from S as
in Proposition 1.19 and denote the closed unit ball of Y by By. Let I
be the identity map from Y into X. Then by Proposition 1.19 we have
that I € K(Y,X). Since X has the approximation property, it follows
that there exists a ®x . € F(Y,X) such that ||®x. — I|| < § where [ - ||
denotes the operator norm in B(Y,X). As K C By this implies that
|Px.x —z||x < § forall z € K. Since @k € F (Y, X) there exist m € N,
Uiy € Y and 2y, ..., 2, € X such that @x o = > " (yix)zg for all
x €Y. Nowset § = ¢/(2mmax{||z1||x, .-, ||#m]|x }). By Lemma 1.24, there
exist functionals xj € X* such that |yjx — xjz| < d for all z € K. Set
Tkexr =Y o (x;z)z, then for all z € K it follows that

Tk ex — x||x <|[|[Tker — Prex|x + || Prer — x| x

€
UUTg e — Preex||x + 3

N 2
X

m
>_(@hr — yix)z,
k=1

€

m
<3l — giellenlx + 5
k=1

€
<ommax{||z1]|x, -, [|zZm|lx} + g =€
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2 Well-definedness of the nuclear trace

In this section, we will construct a class of operators on Banach spaces on
which we can define a trace. To motivate the construction, we go back to
the well-known trace for matrices. Let V' be a n-dimensional vector space
and let B = {ex}}_, be a basis. Let A : V — V be a linear operator
and denote its matrix with respect to the basis B by {a;;}};_;. The usual
way of defining the trace of A as Tr(A) = > ), ap Is not suitable as
we cannot define this in general Banach spaces. A different approach in
defining the trace is to decompose the operator A into operators of rank
one. If v =3} | xxe, € V is an arbitrary vector, then it follows that

Ax = ZxkAek = Z <Z aijj> ek.
k=1

k=1 \j=1

So if we define the linear functionals {¢x}7_, C V* by pp(x) = Y70 ax;z;,
then we can write Az = 370 pp(v)er. Since pp(er) = DT ariojn =
apk, with &;; the Kronecker delta, it follows that we also define Tr(A) =
> r—1 ¥r(ex). Note that this new definition of the trace can in principle be
used in any Banach space, as we eliminated the need for a matrix repre-
sentation of our operator. However, we now require the operator to have a
decomposition in terms of rank one operators.

If X and Y are Banach spaces and we have x* € X* and y € Y, then we
define the operator z* ®y € B(X,Y) by 2*®y : x — x*(x)y. We see that
¥y e F(X,Y) for all z* € X* and y € Y as its image has dimension 0
or 1. Our discussion above motivates to introduce the following concepts.

Definition 2.1. Let X and Y be Banach spaces and let A € B(X,Y).
Then A is a nuclear operator if and only if there are sequences {z? },en in
X* and {yn fnen in Y such that 07 ||z |[||lynll < coand A = >"07 | 2k @y,
which is called the nuclear representation. We define N(X,Y) as the space
of all nuclear operators A : X — Y.

From Definition 2.1 it is immediately clear that if A € N(X,Y’), then
A € F(X,Y). Furthermore, it also follows that A is compact. As is clear
from our discussion above, we are interested in these nuclear operators as

they seem very suitable for defining a trace.

Definition 2.2. Let X be a Banach space and let A € N(X) be a nuclear
operator, so A =Y > x} @, with Y > ||z} |||z, < co. Then we define
the nuclear trace of the representation by

Tr (i r® xn> = i ().
n=1 n=1
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It should be noted that Definitions 2.1 and 2.2 together do not imply
that the nuclear trace is well-defined for a nuclear operator A. The reason
for this is that a nuclear representation of a nuclear operator A is not unique
and the definition of the nuclear trace depends on the chosen representation.
Of course, we would like to prove that the trace is invariant under the chosen
representation of a nuclear operator. However, this is not true in general.
In this section, we will address the question of the well-definedness of this
nuclear trace and we will prove that this is the case if and only if the Banach
space X has the approximation property. To do this efficiently, it will prove
to be useful to endow the space B(Y, X) with a certain topology 7 that
captures the behaviour of being uniformly approximable on compact sets.
Further references to this topology, in particular closures of sets, will be
distinguished from the operator norm topology by means of a superscript
7. S0 if A C B(Y, X), then the closure with respect to the topology 7 will
be denoted by A”.

2.1 The topology of uniform convergence on compact
sets and its continuous linear functionals

To construct the topology mentioned in the introduction of this section,
we first need some definitions. The following construction is based on
Lindenstrauss and Tzafriri [13, p. 31].

Definition 2.3. Let X and Y be normed spaces over F and let K C X be
compact. For all operators T' € B(X,Y'), we define ||T'||x = sup,cx ||Tz||y-

Lemma 2.4. Let X and Y be normed spaces over F and let K C X be
compact. Then || - ||k is a seminorm on B(X,Y).

Proof. Let X and Y be normed spaces over F and let K C X be compact.
Suppose that S,T € B(X,Y) and a € F. It follows that

[aT'[|x = sup [|[aTz|ly = sup || Tz([y = |afsup | Tzlly = || Tk,
zeK zeK zeK

and

15+ Tl = Sup |5z +Tz|y < Sup (ISzlly + 1T=lly) < [[Sllx + 1T x-
S xe

Together these two properties imply that || - || x is a seminorm on B(X,Y).
[

Remark. 1. The seminorms || - || x need not be norms. Take for example
K = {z} for some nonzero z € X. If dim(X) > 2, we can always
find a linear operator T' € B(X,Y’) such that T # 0 but = € ker(T).
It follows that T # 0 but ||7'||{z} = 0.
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2. For each nonzero T' € B(X,Y) there exists a compact K C X such
that ||T||x > 0. Take for example K = {z} with z € X such that
Tx # 0.

The second remark implies that the set of all seminorms as in Definition
2.3 is separating. So we can use it to construct a locally convex Hausdorff
topology on the space B(X,Y).

Definition 2.5. Let X and Y be Banach spaces. Define
F:=A]|lx: K C X compact}.

We define the topology of uniform convergence on compact sets or ucc topo-
logy, written as 7, as the topology generated by the open balls of all semi-
norms in F. That is, the open balls of all seminorms in F are a subbase
for 7.

Considering the locally convex space (B(X,Y),7) we can wonder what
the continuous linear functionals with respect to this topology look like.
Most of the remaining part of this subsection will be devoted to answer-
ing this question. Furthermore, from now on we write BﬁK)(T) for the
open “ball” with radius r > 0 centered at T € B(X,Y’) with respect to
the seminorm || - || for some compact K C X. However, before we start
constructing the continuous linear functionals on (B(X,Y), ), we might
wonder why we care about this topology. One of the reasons is that us-
ing this new topology, we can rephrase the property of being uniformly
approximable on compact sets very conveniently.

Lemma 2.6. Let T € B(X,Y) and suppose we have n positive real numbers
€1,...,€n and n compact sets Ky, ..., K,,. Then there exist an ¢ > 0 and a
compact K C X such that the following inclusion holds:

Proof. Let T € B(X,Y) and suppose we have n positive real numbers
€1, ..., €, and n compact sets K, ..., K,,. Suppose that K = (J_, K; and
that € = minj<;<,, €;. K is compact as it is a finite union of compact sets.
Let S € B")(T) be arbitrary. Then it follows that for all i € N such that
7 < n that

1S =Tk, <|S=Tlx <e< e

Therefore it follows that § € B i)(T) for all i € N such that ¢ < n, hence
it follows that
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Proposition 2.7. Let A € B(X,Y) be a linear operator and let V C
B(X,Y) be a linear subspace. Then the following two assertions are equiv-
alent.

1. For every compact K C X and every e > 0, there exists some T €
V' such that ||Tk x — Azl|ly <€ for allz € K.

2. AeV'.

Proof. We first prove the implication 1 = 2. Assume that for every
compact K C X and every € > 0, there exists some Tk, € V such that
[T cx — Az|y < € for all r € K. We will argue by contradiction, so
suppose A ¢ V V'. As V' is closed, we can use Lemma 2.6 to obtain an
¢ > 0 and compact K C X such that B (A) NV = (). However, this
implies that there exists no operator 7' € V' such that [Tz — Az[|y < § for
all x € K, which contradicts the assumptlon So it follows that A € V

To prove 2 = 1, assume that A € V. We again argue by contradic-
tion. Suppose there exists a compact K C X and an € > 0 such that there
is no operator 7' € V such that || Tx — Az||y < e for all z € K. This implies
that BE(K)(A) NV = () and therefore it follows that V' C B(X,Y)\ BE(K)(A).
Since the latter is closed, it follows that V' C B(X,Y) \ B (A). By
assumption, this implies that A € B(X,Y) \ B (A) which is a contra-
diction. So for every compact K C X and every € > 0, there exists some
Tk € V such that |[Tk x — Az|y < e for all z € K. O

Corollary 2.8. Let X be a Banach space and let I be the identity opemtor
on X. Then X has the approximation property if and only if I € F(X)

Proof. This follows from combining Theorem 1.2 with Proposition 2.7 for
A=Tand V = F(X). ]

We see that using the ucc-topology, our second characterization of the
approximation property becomes very concise. The ucc-topology also al-
lows us to give to different characterizations of the approximation property.

Theorem 2.9 ([13, Theorem 1.e.4]). Let X be a Banach space. Then the
following are equivalent:

1. ITe F(X)".
2. F(X,Y) = B(X,Y) for all Banach spaces Y .
3. F(Y,X) = B(Y,X) for all Banach spaces Y .

Proof. The implications 2 = 1 and 3 = 1 are clear by taking X =Y.
We prove the remaining implications 1 = 2 and 1 = 3.
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1 = 2: It suffices to prove that B(X,Y) C F(X,Y)  as the converse
inclusion is trivial. Let A € B(X,Y’) be a bounded linear operator. Let
€ > 0 be arbitrary and let K C X be compact. As [ € F(X )T, it follows
by Proposition 2.7 that there exists a T' € F'(X) such that ||z — Tz||x <€
for all x € K. This implies that ||Az — ATz|y < ||Al|||lz — Tz|x < ||Alle
for all z € K. As e and K were arbitrary and we have that AT € F(X,Y),
it follows that A € F(X,Y) T, again by Proposition 2.7. We conclude that
F(X,Y) = B(X,Y).

1 = 3: It again suffices to prove that B(Y,X) C F(Y,X) . Let
A € B(Y,X) be a bounded linear operator. Let ¢ > 0 be arbitrary and
let K C Y be compact. As A is continuous, the image C = AK C X is
compact. As I € F(X) , it follows again that there exists a T € F(X)
such that ||z —Tz||x < € for all z € C. This implies that [|Ay —T Ay||x < €
for all y € K. As € and K were arbitrary and we have that TA € F(Y, X),

( T

it follows that A € F(Y, X) . We conclude that F(Y, X) = B(Y,X). O

Returning to the construction of the continuous linear functionals, we
need a few preparatory results to prove the final result.

Lemma 2.10. Let ¢ be a linear functional on (B(X,Y), 7). Then ¢ is
continuous if and only if there exist a C > 0 and a compact K C X such
that

(1) < C|T|x VT € B(X,Y).

Proof. Let ¢ be a linear functional on (B(X,Y),7). To prove the for-
ward implication, let B;(0) be the open unit ball centred at 0 € F. By
continuity of ¢, it follows that ¢~!(B;(0)) is an open neighbourhood of
0 € B(X,Y). So we can find n positive real numbers €y, ...,€, and n
compact sets K, ..., K, such that (), B¥V(0) ¢ ¢ 1(B(0)). By ap-
plying Lemma 2.6, we can find a compact K C X and an € > 0 such
that BY)(0) ¢ ¢~1(B1(0)). So it follows that ¢(B¥)(0)) ¢ By(0) and
thus by rescaling we find o(BY)(0)) C Bei(0). If |T|x = 0, then
for all m € N we have that ¢(T) € gO(BT(nK_)l(O)) C B(me-1(0) hence
©(T) € Nymen Bime-1(0) = {0}. Now suppose that ||T'||x # 0 then

T
¢< )\ < 26| T).

lo(D) = 2Tk | | S
2T x

By our previous calculation, this inequality obviously extends to the case
|T|lx = 0, proving the forward implication.

For the converse implication, assume there exists a C' > 0 and a compact
K C X such that for all T'€ B(X,Y) we have that |¢(T)| < C||T|| k. Let
U C FF be open. We prove that ¢! (U) is open. Suppose that T € o= }(U),
thus we have that ¢(7T") € U. Since U is open, we can find an € > 0 such
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that B.(¢(T)) C U. By assumption, it follows that Be(gzl(T) C ¢ ()
hence ¢! (U) is open and thus ¢ is continuous. O

Lemma 2.11. Let {a, }nen be a sequence of positive real numbers such that
Yoo an converges. Then there exists a sequence of positive real numbers
{nn}nen such that n, — co as n — oo and Y .| a,n, converges.

Proof. Let {ay}nen be a sequence of positive real numbers such that >~ | a,,
converges. If only finitely many a,, are nonzero, any divergent sequence will
work, therefore we can assume that infinitely many a, are nonzero. De-
note the sum by S = > > a,. Define the tails of the series as t, =
> Q. It follows that ¢y = S and as >~ | a, converges, we also have
that lim,_,.f, = 0. As infinitely many a, are nonzero, it follows that
tp, > 0 for all n € N. Now define n, = 1/y/t,. It is obvious that the

sequence {1, tnen diverges. It also follows that

Vtn
< 2?}@ — Vitur1) = 2(VS = lim Vi) = 2V5,

anz% _ 3 V= Vi) (Vi)

n=1

where the second-last equality follows from the fact that we have a tele-
scoping series. It follows that the sequence {n,},cn is indeed a divergent
series such that Y, a,n, converges. O]

Definition 2.12. Let X be a Banach space. For p > 1 we define the space
(D=, X), as the space of all sequences {,, }nen in X such that the /,-norm

is finite: |[{zn}nenllp = O oney ||2,|[P)"/? < 00. We also define (B, X), to

be the space of sequences {z;, } ey in X such that lim,,, x,, = 0, equipped
with the supremum norm || - ||s.

Remark. The spaces defined in Definition 2.12 are also complete, see for
example Megginson [15, Appendix C].

Definition 2.13. Let X be Banach space. For all sequences {x,},en in
X, we define the projection on the i-th coordinate by the map m; such that

Ti({Zn fnen) = 4.

Lemma 2.14. Let X be a Banach space and suppose that i € N. Let w;
be the projection map from Definition 2.13 restricted to (P, X),. Then
il = 1.

Proof. Let X be a Banach space and suppose that i € N. Let 7; be the
projection map from Definition 2.13 restricted to (&, X),. Then for
any sequence {zy }nen € (P, X), we have that ||7;({zn }nen) || = [|lzi]] <
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I{xn }nenl|oo- It follows that ||m;]] < 1. Now let 2 € X be a unit vector and
let {z,}nen be the sequence defined by z,, = x,,;, where d,,; denotes the
Kronecker delta. Then {z,}nen € (P, X), and |[{zn}nenlloc = 1. So
I7i({2ntnen) | = 2]l = 1 = |[{zn}nenlloo, hence ||| = 1. O

Proposition 2.15. Let X be a Banach space and denote its dual space
by X*. Then the spaces (D5, X*), and (B, X),)" are isometrically
1somorphic.

Proof. Let X be a Banach space and X* its dual space. Define the map

o (P, XY, — ((@le X)O)>k as {z% nen — > oo 2k o m,. Then by
Lemma 2.14 it follows that

0 00 OO
Sapom| <3 leliml = 3 il < .
n=1 n=1 n=1

hence @ is well defined. Furthermore, linearity of ® is clear. We are done
when we prove that ® is isometric and surjective.

To prove that @ is isometric, we need to show that ||>° 7 z% om,| =
Yool for all {z}}nen € (D, X*),. By the computation above,
it remains to show that ||> 07 @ om,|| > > 7, |lzk| for all {z}},en €
(B, X*),. Let {z}},en € (D, X*), be arbitrary, let € > 0 and let
N € N. Then by definition of the operator norm, there exists z; € X such
that ||z;]| < 1 and zjz; > [|2]|| — & for all i < N. Now define {y, }nen
by y; = x; for all i < N and y, = 0 for all n > N. It follows that
{Yntnen € (B, X), and |[{yn}nenlloo < 1. So we have

Y @ om, <Z ;, © m) ({ymtmen) || = ||D_ 25 (n)

N N
€
> ol =5 =—e+ )l
N
n=1 n=1

We conclude that for all ¢ > 0 and N € N, we have that " [lz%| <
IS5, 5 0 mll + € and thus Y50, [l < I35, % o mall. This precisely
means that ® is an isometry.

To prove surjectivity let ¢ € ((@Zozl X )0)* be an arbitrary functional.
If v € X is a vector and ¢ € N, define (z); as the sequence {x, },en With
Zn = 0, where ¢, ; denotes the Kronecker delta. Define the sequence
{z*}nen by setting ziz = ¢((2),). We need to check that {z}},en €
(B, X*), and that ®({z}},en) = ¢. To prove the first assertion, let
e > 0and N € N. Then for all i < N there exists z; € X such that ||z;|| <1

and zjz; > ||z]|| — . Define z = SV (2:);. Then z € (@, X), and

>
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|7]|oo < 1. Tt follows that

N

Zsﬂ((l’z‘)z‘)

=1

lp(z)| =

N N
Zx;‘xz >—e—|—Z||x;‘||.
i=1 i=1

We conclude that for all e > 0 and N € N we have that Zf\il lzf || < ||l +e€
and thus > %, [|z7]| < [le|l. It follows that {z}},en € (B, X*),. To
prove that ®({z}}nen) = @, let @ = {2p}nen € (P, X), be arbitrary.
Then

[e's) N
@qﬁh@mw:<2¥yw0cw=£&2¥iwum=£$§;%%

= A}EHOOZQD((I‘”)”) = Jm ¢ (Z(%%) = ().

n=1

The last equality is justified as ¢ is continuous with respect to the topology

induced by the supremum norm and limy_, Hx — ij:l(a:n)n = 0 since
o0

e (P, X), O

Having proven these preparatory results, we can find a general form of
the continuous linear functionals on the space (B(X,Y), 7). The theorem
and proof given here are from [13].

Theorem 2.16 ([13, Proposition 1.e.3]). Let X and Y be Banach spaces
and let T be the topology of uniform convergence on compact sets in X.
Then the continuous linear functionals on (B(X,Y),T) are precisely all
functionals @ that have a representation in the following form:

) 00
(1) = yi(Tn), {zntnen C X, {yitnen €Y, D llyillllzall < oo
n=1 n=1

Proof. First, suppose ¢ has a representation as in the theorem. We can
assume that x,, # 0 for all n € N. By Lemma 2.11, there exists a se-
quence of positive real numbers {n, }n,en such that 1, — oo as n — oo and
52 mallaallly; ] = € < o0. Let K = {a/ |2} pers U {0}. Then K is
compact in X as any cover of open sets has a finite subcover. It follows
that:

(D) < sl Tzall = mallzallllys T @/ [zallna) | < CIT |k
n=1 n=1

By Lemma 2.10 this implies that ¢ is a continuous linear functional.
Conversely, suppose that ¢ is a continuous linear functional on B(X,Y).
By Lemma 2.10 this implies that there exists a compact K C X and a
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C' > 0 such that |p(T)| < C||T||x for all T € B(X,Y). By Proposition
1.15, there exists a sequence {z, },en in X, converging to 0, such that K C
€o({xn }nen). Therefore it follows that [¢(T)| < C||T||k < CT ||es({wn}nen)-
So without loss of generality, we can assume that K = ¢o({xy }nen). Define
S:BX)Y) = (@,.,Y), by T = {Txp}nen. Since K = To({xp}nen),

we can use Proposition 1.13 to write z = ZneN t,x, with ¢, > 0 and
(1) < C|T|x = Csup || Tz|| = C  sup
zeK tn>0

ZneNtn <lforallz e K. So
ZneNitngl neN

<C s Y ulTal < OISO
Stz "

This implies there exists a well-defined linear functional ¢ : SB(X,Y) — F
such that ¥(S(T)) = ¢(T) for all T € B(X,Y). Indeed, suppose that
T,U € B(X,Y) and that S(U) = S(T'), then by our calculation above it
follows that |p(T) —o(U)| = |o(T' = U)| < C||S(U) = S(T)||sx = 0. There-
fore it follows that ¢(U) = ¢(T) and thus ¢ is well-defined on SB(X,Y)
and can be continuously extended to the closure of SB(X,Y) in (), Y),.
By definition, it follows that |(S(T))| = |¢(T)| < C||S(T)||s0, hence 9 is
bounded. By the Hahn-Banach theorem, we can extend ¢ to a bounded
functional on (€, Y"), which by Proposition 2.15 corresponds to an el-
ement {y’},en € (P, Y*),. By using the isometric isomorphism con-
structed in Proposition 2.15 it follows that

P(T) =$(S(T)) =Y _ynoma(S(T)) =) _yn(Tx,) VT € B(X,Y).

As {z, }nen is bounded and {y },.en is absolutely summable, it follows that
> ne 9l ll#n]] < oo as required. 0

Remark. Note that the 7-continuous linear functionals have striking similar-
ities with the nuclear operators. If A : X — Y is a nuclear operator with a

nuclear representation A = > "7 . z* ®y,, then we can define a 7-continuous

n=1"n
linear functional ¢ by ¢(T) = > 7 zi(Ty,) for all T € B(Y, X). If
X =Y, it directly follows that Tr (3., 2% ® y,) = o(I). In Section 2.3,

we will study this connection in more detail.

2.2 Nuclear operators and the nuclear trace

Having developed quite some machinery concerning the ucc-topology, we
can use these results to study nuclear operators. We will spend the rest of
this subsection proving the following result, which is also due to Grothendieck
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[8] and makes use of the idea that we can view the nuclear trace as the eval-
uation of some continuous functional at the identity operator.

Theorem 2.17. Let X be a Banach space. For all nuclear operators
A € N(X), we define the nuclear trace of the operator A as Tr(A) =
Tr (D7, 2k @xy,) where Y " xk ® x, is a nuclear representation of A.
This trace is well-defined (i.e. representation independent) for all nuclear
operators A if and only if X has the approximation property.

To prove Theorem 2.17, we need some intermediate results. The proof
of the following result is from Rudin [21, Theorem 1.13].

Lemma 2.18. Let X be a topological vector space over F with topology T
and let V. .C X be a linear subspace. Then V' is a linear subspace of X.

Proof. First, note that for any set S C X we have the following equivalence:
z € 8" if and only if for all open neighbourhoods U of z, we have SNU # 0
(this is a general feature of topological spaces) This implies that for two
subsets A and B of X we have that A"+ B c A+ B". To prove this,
suppose that @ € A” and b € B" and let U be an open neighbourhood
of a +b. We will prove that U N (A + B) # ). Since the addition map
+: X x X — X is continuous, it follows that the inverse image of U under
addition is an open neighbourhood of (a,b) € X x X. Hence there exist
open neighbourhoods U; of a and Us of b such that Uy + U, C U. Now as
a€ A and b € B’ it follows that we can find elements z € AN U; and
y € BNU,. It follows that z +y € (A+B)N (U1 +Uz) C (A+B)NU.
As (A+ B)NU # ( for all open neighbourhoods of a + b, it follows that
a+be A+ B", we conclude that A"+ B' c A+ B .

Furthermore, in topological vector spaces we also have that for any
nonzero scalar o the map M, : X — X, defined by x — ax, is a homeo-
rnorphlsrn Hence, it follows that for any subset S C X we have that
aS" = aS". For a = 0, the same equality holds since {O} is closed. We
conclude that for all scalars o, we have that aS™ = aS . Now let a be a
scalar and let 2,y € V' be two Vectors Then by the prevrous two results
it follows that acx +y € oV +V =aV +V caV+V cV'. m

Corollary 2.19. Let X be a Banach space and let V C B(X) be a linear
subspace. Then V' is a linear subspace of B(X).

Remark. Whereas Lemma 2.18 applies to any topological vector space with
a topology 7, we now assume 7 to be the ucc-topology.

To proceed, we need the following theorem, which is a consequence of
the separating hyperplane theorem for locally convex spaces. We will not
give proof. This can be found in Rudin [21].
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Theorem 2.20 ([21, Theorem 3.5]). Let X be a locally convex space and
denote its topology by 7. Let V- C X be a linear subspace of X. Suppose
that x ¢ V. Then there exists a continuous linear functional ¢ such that
o(x) =1 and ¢ vanishes on V.

Corollary 2.21. Let X be a Banach space and let T be the ucc-topology
of B(X). Let V. C B(X) be a linear subspace and suppose that A €
B(X). Then A € V' if and only if each continuous linear functional o
of (B(X), ) that vanishes on V also vanishes on A.

Proof. First, suppose that A € V. Let ¢ be a continuous linear functional
of (B(X), 7) that vanishes on V. Tt follows that V' C ¢ 1 ({0}). Continuity
of o implies that ¢~ 1({0}) is 7-closed. So, it follows that V' C ¢ ({0})
and therefore that A € ¢~'({0}). Hence ¢ vanishes on A.

Conversely, suppose that each continuous linear functional ¢ of (B(X), 7)
that vanishes on V' also vanishes on A. Suppose that A ¢ V. By Theorem
2.20, there exists a continuous linear functional that vanishes on V' but is
non-zero on A, which is a clear contradiction. O]

Proposition 2.22. Let X be a Banach space. Then X has the approxi-
mation property if and only if each nuclear representation of the 0-operator
has nuclear trace 0.

Proof. Let X be a Banach space. Combining Corollary 2.8 and Corollary
221 for A =1 and V = F(X) gives that X has the approximation property
if and only if each 7-continuous functional that vanishes on F(X) also
vanishes on I.

Suppose that each 7-continuous functional that vanishes on all finite
rank operators also vanishes on I and let Y ° | ¥ ® x,, be a nuclear repre-
sentation of the 0-operator. Then it follows that ", z%(z)z, = 0 for all
z € X. Let ¢ be the continuous functional given by o(T') = > 7 @k (T'x,,).
Then for all z* € X* and v € X

pla” @a) =Y a(a" @alw,) =) ap(a"(@)) = ) ap(x)a(z,)

=a" (Z xfl(x)mn> =2"(0) =0.

So ¢ vanishes on all rank one operators and therefore by linearity it follows
that ¢ vanishes on all finite rank operators. By assumption, it now follows
that Tr (307 2} @ x,,) = p(I) = 0.

Conversely, suppose that each nuclear representation of the 0-operator
has nuclear trace 0. Let ¢ be a 7-continuous linear functional that van-
ishes on F'(X). We are finished when we prove that ¢(I) = 0. By Theo-
rem 2.16 there exist sequences {y; }nen in X* and {y, }nen in X such that
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Yoo Ny lynll < oo and o(T) = >0, yi(Tys). As ¢ vanishes on all finite
rank operators, it vanishes in particular on all rank one operators. So it
follows that

0=p(* @)=Y yrla* @x(y)) = Y _va(a"(y)z) = > yi(@)a* (yn)

=" (Z y:(x)yn) Vot e X* Vo e X,
n=1

As the bounded linear functionals separate all points y € X, it follows
that > 7 v (x)y, = 0 for all z € X. Hence >~y ® y, is a nuclear
representation of the 0-operator, which by assumption has nuclear trace 0.
It follows that ¢(I) = Tr (D07, v @ y,) = 0. O

With this result, we can now prove our main result of this section,
Theorem 2.17.

Proof of Theorem 2.17. Let X be a Banach space. First, suppose the
nuclear trace is well-defined for all nuclear operators A € N(X). Let
> oo, T ®x, be a nuclear representation of the 0-operator. As Y > | 2 ®0
is also a nuclear representation of the 0-operator and the nuclear trace is
well-defined by assumption, it follows that

Tr <§:9§Z®xn> =Tr (ixi@@) = ixZ(O) = 0.
n=1 n=1 n=1

So each representation of the 0-operator has a nuclear trace equal to 0
and therefore by Proposition 2.22 it follows that X has the approximation
property.

Conversely, suppose that X has the approximation property. Let A €
N(X) be a nuclear operator. Suppose that >~ % @z, and Y~ y* Qy,
are two nuclear representations of A. Then their difference

ZxZ@xn—ZyZ®yn:A—A:0
n=1 n=1

is a nuclear representation of the 0-operator. Since X has the approx-
imation property by assumption, it follows from Proposition 2.22 that
Tr (> 2k @ay — D> 00 Yk @yy,) = 0. From Definition 2.2 it follows that
the nuclear trace is additive, hence it follows that Tr (> 7, 2! ® ) =
Tr (307 yX ® y,). So all representations of A have the same nuclear trace,
hence the nuclear trace of A is well-defined. O
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2.3 The Banach space N(X,Y)

In the previous subsection, we proved that the nuclear trace is well-defined
for all nuclear operators in N(X) if and only if X has the approximation
property. Moreover, from the definition of the nuclear trace it is clear that
the map Tr : N(X) — T is a linear operator if X has the approximation
property. Motivated by this, we can try to equip N(X,Y) with a norm
| - ||~ such that the nuclear trace is a bounded functional on the space
(N(X), || - llzv)- The construction of this is motivated by Diestel, Fourie
and Swart [3, p. 10, Proposition 1.14] where the projective tensor product

X *@Y is endowed with a similar norm.

Furthermore, we also encountered an intimate connection between nu-
clear representations of nuclear operators in N(X,Y") and the continuous
functionals on (B(Y, X), 7). This invites us to take a closer look at these
spaces, which we will do at the end of this section.

Definition 2.23. Let X and Y be Banach spaces. Then for all nuclear
operators A € N(X,Y) we define the nuclear norm

Al = mf{z et ol 4 = zxmn}.
n=1 n=1

Proposition 2.24. Let X and Y be Banach spaces. Then for all nuclear
operators A € N(X,Y) we have that |A|| < ||Allx and the nuclear norm
| - |~ is @ norm on N(X,Y).

Proof. Let X and Y be Banach spaces and let A € N(X,Y) be a nuclear
operator. Then for any nuclear representation A = > ° 2} ® y, of A
we have that ||A| < D207 [|zk||[|ynll. When we take the infimum over
all nuclear representations of A it follows that ||A| < ||Al|x for all A €
N(X,Y).

To prove that ||-|| v is a norm, suppose that « € Fand A, B € N(X,Y).
It follows that ||aA||y = inf {D> 7 |a|l|zi||lynll - €A =D"07 2k @ ay, } =
|a|||Al| ;. We also have that

|A+ B|n = inf {Z s lllynll : A+ B =Y a, ®yn}
n=1 n=1

00 00
< lilllynll + > g llloall,
n=1 n=1

for all representations A = > | 2% Qy, and B = > ° | u’ ®v,. By taking
the infima over the representations of A and B we obtain ||[A + B||y <
|Al|x + ||Bl|n. Finally, if ||Al|x = 0 it follows that ||A]| < ||Al|x = 0 so
|Al| = 0 and hence A =0. So || - || is a norm on N(X,Y). O
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Having constructed the normed space (N (X,Y), |- ||n), we can wonder
if this space is complete too. This turns out to be the case. We give a proof
according to Pietsch [17].

Proposition 2.25 ([17, Lemma 3.1.3]). Let X and Y be Banach spaces.
Then the normed space (N(X,Y),| - ||n) s Banach.

Proof. Let X and Y be Banach spaces and let {T,},en be a Cauchy se-
quence in (N(X,Y), ||-lln). As || T =T < [T —Tml|n for all n,m € N, it
follows that {7}, } .en is also a Cauchy sequence in B(X,Y’) with the respect
to the operator norm. Since Y is complete, so is B(X,Y’) and therefore
{T.}nen has a || - ||-limit 7" in B(X,Y).

Since {7}, }nen is Cauchy in (N(X,Y), || ||n), there exists an increasing
sequence of integers Ny such that ||T;, — Tp,||y < 1/282 for all n,m >
Ni. By definition of the nuclear norm, this implies that for all £ € N
we have nuclear representations Ty, — TN, = > pen(® i )) ® y¥ with

S en 1@ g < 17262, As this holds for all k € N, it follows that
for all l € N

k+i-1 k+i-1
TNk+l - TNk = Z (TNm+1 - TNm Z Z xv(mm) ® yn
m=k m=k neN

As T, converges to T', we can take the limit as [ — co. It follows that

o0
T'—Tn, = Z(TNWH —Tv,,) = Z Z () @ g™
m=k m=k neN
As
=1 1
ZZH NI H<22m+2=2k+1,
m=k neN m=k

it follows that T — Ty, is nuclear and that |T — Ty, ||y < 1/281 So
T = (T — Ty,) + Tn, is nuclear. We claim that 7" is also the limit of
{T, }nen with respect to the nuclear norm. Let € > 0 be given. Then there
exists a k£ € N such that 1/2"“‘ < €. So for all m > N, it follows that
| T —Tnllxy < IT—Tw, \Iv+ 1T, — Tl v < 1/281 4172842 < 1/2F < €. Tt
follows that {7}, }nen converges to T' € N(X,Y') with respect to the nuclear
norm, hence (N(X,Y),| - ||n) is complete. O

Remark. Note that we did not use completeness of X in the proof of Propo-
sition 2.25. However, the result is formulated this way as we only consider
nuclear operator acting on Banach spaces. If we would allow for nuclear

operators on normed spaces, then we would only require completeness of
Y.
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We will now prove that the nuclear trace is indeed a bounded linear
functional on the space N(X) if X has the approximation property and we
equip N (X) with the nuclear norm.

Proposition 2.26. Let X be a Banach space that has the approximation
property. Then the nuclear trace Tr : N(X) — F is a bounded linear
functional on (N(X), || - [|~)-

Proof. Let X be a Banach space that has the approximation property.
Then the nuclear trace is well-defined by Theorem 2.17 and is linear by
definition. Now suppose that A € N(X) and that ¢ > 0. By definition of
the nuclear norm, there exists a nuclear representation A =Y > | =¥ ® x,,
such that ">, Hxn||||xn|| < ||A|ly + €. Tt follows that

e (Sen)l-

Tr(A < Sl lllzall < Al +e.

As € > 0 was arbitrary, it follows that | Tr(A)| < ||A||y for all A € N(X).
Therefore it follows that || Tr|| < 1. Hence Tr is a bounded functional of
the Banach space (N(X), || - ||l~)- O

As promised, we will have a closer look at the connection between nu-
clear operators and the linear functionals that are continuous with respect
to the ucc-topology. To illustrate this, let X and Y be Banach spaces and
N(X,Y) be the corresponding space of nuclear operators. Let A € N(X,Y)
be a nuclear operator. We have already seen that for any representation
A= NTy @ Yn, where {7 }pen is in X* and {yn Jnen is in Y, there ex-
ists a functional ¢ € (B(Y, X), 7)* defined by o(T) = > :Bn(Tyn) for all
T € B(Y, X). However, we do not know if different representations of the
same nuclear operator correspond to the same functional. In the next the-
orem, we prove that this is the case if either X or Y has the approximation

property.

Theorem 2.27. Let X and Y be Banach spaces and assume that either X
or'Y has the approximation property. Consider the map

®: N(X,Y) = (B(Y,X),7)*

defined by ®(A)(T) = >, .cn T (Tyn) where Y, Tk @y, is a nuclear repre-
sentation of A andT € B(Y,X). Then ® is a well-defined (i.e. independent
of the choice of nuclear representation) linear isomorphism.

Proof. We prove that @ is a well-defined map from N(X,Y") to (B(Y, X), 7)*.
By construction, it is then clear that ® is a linear map. To prove that &
is a linear isomorphism, we show that ® is injective. Surjectivity directly
follows from Theorem 2.16.
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We prove that ¢ is well-defined by showing that & (ZneN Ty @ yn) =0
for any nuclear representation )z ® y, of the O-operator. The well-
definedness then follows for arbitrary A € N(X,Y) as the difference of
two different nuclear representations is a nuclear representation of the 0-
operator. Solet > % @y, be a nuclear representation of the 0-operator
and define ¢ = ¢ (ZneN Ty @ yn). We need to prove that ¢ = 0. As either
X or Y has the approximation property, it follows from Theorem 2.9 that

T

F(Y,X) = B(Y,X). So it suffices to prove that ¢ vanishes on F(Y, X) as
ker(¢) is closed. Now let y* € Y* and x € X be arbitrary, then

Py @) =Y (Y @a(y)) = Y wh(®)y" (yn)

neN neN
=y (Z xil(fﬁ)%) =y"(0) = 0.
neN

So ¢ vanishes on all rank one operators, hence by linearity ¢ vanishes on
F(Y, X). So ¢ =0, hence ® is well-defined.

We show that & is injective by showing that it has a trivial kernel.
Suppose that A € N(X,Y) is a nuclear operator such that ®(A) = 0. It
follows that ®(A)(T") =0 for all " € B(Y, X). In particular, this holds for
all bounded linear operators T = y* ® x where y* € Y* and z € X are
arbitrary. By the same calculations as above, it follows that

DAy @x)=y"(Axr) =0 Vy* €Y VreX.

As Y™ separates the points in Y, it follows that Az = 0 for all x € X,
hence A = 0. We conclude that ker(®) = {0} hence & is injective. O

The following corollary is an obvious consequence of Theorem 2.27.

Corollary 2.28. Let X, Y and ® be defined as in Theorem 2.27 and let
A€ N(X,Y) be a nuclear operator. Then the following identities hold:

1. ®(A)(y* @ x) = y*(Ax) for any x € X and y* € Y*.
2. If Y = X, then Tr(A) = ®(A)(I).

36



3 Super-diagonal forms for compact operators

In the first two sections, we discussed the approximation property, nuclear
operators and the nuclear trace. We now turn to the eigenvalues of compact
operators and their invariant subspaces. To study these properly, we will
need to introduce so-called nests of invariant closed subspaces, also termed
invariant nests. The goal of this section is to show that compact operators
on complex Banach spaces can be represented in a way very similar to upper
triangular matrices. To prove this, we will follow Ringrose [20], but first
we need some preparatory results. In this section, all subspaces are closed,
unless stated otherwise. Furthermore, a proper subspace is a subspace that
is neither the entire space nor the zero space.

3.1 Lomonosov’s theorem

In studying the invariant subspaces for compact operators, a natural first
question is whether all operators have such invariant subspaces. Of course,
if X is a Banach space and T is a linear operator on X then the zero space
{0} and the entire space are invariant spaces for the operator 7. These
are called trivial invariant spaces. The question of whether each linear
operator on a Banach space X has a proper invariant subspace was solved
in the negative by Enflo, who published his proof in 1987 [4]. However,
Aronszajn and Smith proved in 1954 that all compact operators on complex
Banach spaces of dimension at least 2 have proper invariant subspaces [1].
Lomonosov generalised this result in 1973 by proving that each compact
nonscalar operator on a complex Banach space has a proper hyperinvariant
subspace [14]. This result is known as Lomonosov’s theorem and we will
use this to construct invariant nests.

Definition 3.1. Let X be a Banach space and let T" be a bounded operator.
A (not necessarily closed) subspace H C X is a hyperinvariant subspace

for T if it is an invariant subspace for all bounded operators commuting
with 7.

Remark. Since any operator certainly commutes with itself, each hyper-
invariant subspace for an operator is an invariant subspace too.

Definition 3.2. Let X be a Banach space. A bounded operator 7" € B(X)
is a scalar operator if it is a scalar multiple of the identity operator.

Theorem 3.3 (Lomonosov’s theorem). Let X be a complex Banach space
with dim(X) > 2 and let T be a nonscalar compact operator on X. Then
there exists a hyperinvariant proper subspace for T'.

Remark. Note that the assumptions in our formulation of Lomonosov’s
theorem differ from those in the formulation given in [16]. The nonzero
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assumption on the compact operator has been replaced with the assump-
tion of being nonscalar. Furthermore, a restriction on the dimension of
the Banach space is added. The restriction on the dimension is due to the
obvious reason that spaces with dimension less than or equal to 1 have
no proper subspaces. Replacing the nonzero assumption by the nonscalar
assumption was done after the author realised that in finite-dimensional
Banach spaces, the nonzero assumption is not strong enough. Surely,
for infinite-dimensional Banach spaces, replacing nonzero with nonscalar
changes nothing as the zero operator is the only compact scalar operator.
However, since scalar operators commute with all linear operators and in
finite-dimensional spaces all linear operators are compact, it is not difficult
to construct counter-examples to Lomonosov’s theorem with the weaker
assumptions. It also turns out there are other sources, like [11, Section 12],
that use the stronger assumptions we found.

The proof we give is due to Hilden [16] and is significantly simpler
than Lomonosov’s original proof, which used the Schauder fixed-point the-
orem. We first need a few preparatory results. Peculiarly, Hilden’s proof
of Lomonosov’s theorem is also much simpler than the original proof of the
weaker result by Aronszajn and Smith. This is why we use the stronger
result.

Proposition 3.4. Let X be a Banach space and T a bounded operator on
X. If M C X 1is an invariant (not necessarily closed) subspace for T', then
so is M.

Proof. Let X be a Banach space and T a bounded operator on X. Let
M C X be an invariant subspace for 7 and let © € M. We prove that
Tz € M. As v € M, there exists a sequence {x, },en in M such that z,,
converges to x as n — oo. As M is an invariant subspace for T, it follows
that {T'z, }nen C M. By continuity, it follows that T2 = lim,,_. Tz, € M.
We conclude that M is an invariant subspace for 7. O

Other results we will need are the well-known spectral radius formula
and the Fredholm alternative. We will not give proofs, but these can be
found in various textbooks on functional analysis e.g. Megginson [15, The-
orem 3.3.27 + 3.4.24].

Theorem 3.5 (The Spectral Radius Formula). Let X be a complex Banach
space. Then for all bounded operators T' € B(X), the spectral radius r(T')
s given by
r(T) = lim |77
n—oo
Corollary 3.6. Let X be a complex Banach space. Then for all bounded

operators T € B(X) we have that r(T) = 0 if and only if lim,, . ||(aT)"|| =
0 for all a € C.
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Proof. Let X be a complex Banach space and let T € B(X) be a bounded
operator. Suppose that r(T) = lim,_ ||7"||/" = 0 and let @ € C be
an arbitrary scalar. If a = 0, it is obvious that lim,_, ||(aT)"]| = 0. So
suppose that o # 0. Choose a positive real € such that 0 < ¢ < 1. By
definition of the limit, there exists an N € N such that for all n > N we
have that || 77||'/™ < €|a|™!. It then follows that for all n > N we have
that ||(aT)"]| = |a|™*|]T"]| < €* < e. Therefore, lim,,_, ||(a1)"]| = 0.

Conversely, suppose that lim, . |[(e7)"]|| = 0 for all @ € C. Let
a € C be arbitrary but nonzero. By definition of the limit, there exists
an N € N such that for all n > N we have that |a|™||T"]] < 1. This
implies that for all n > N, we have that | T"||*/" < |a|™*. This implies
that limsup, .. ||7"]|"/" < |a|™'. As this applies to all nonzero a € C,
we can make « arbitrarily large, hence limsup,,_,_ ||77|"/" < 0. It follows
that

lim sup || 7|/ < 0 < liminf || 77]|/™ < lim sup | T"||/"
n—00 n—00 n—00

We can conclude that the limit superior and limit inferior are equal and
equal 0. Hence, 7(T) = lim,_,o || 777 = 0. O

Theorem 3.7 (The Fredholm Alternative). Let X be a complex Banach
space, let T € K(X) be a compact operator and let a be a nonzero complex
scalar. Then the following are equivalent:

1. ol =T 1is injective.
2. ol — T 1s surjective.
3. ol =T 1s invertible.

Remark. The Fredholm Alternative as stated here is formulated differently
from Megginson [15]. However, Megginson’s formulation implies our for-
mulation. Note that parts a and ¢ in Megginson correspond to our parts 1
and 2. Furthermore, the equivalence of injectivity and surjectivity implies
equivalence with invertibility by the Bounded Inverse Theorem.

Corollary 3.8. Let X be a complex Banach space and let T € K(X) be
a compact operator. Then all nonzero elements of the spectrum o(T') are
eigenvalues of T.

With these results established, we can prove Theorem 3.3.

Proof of Theorem 3.3. Let X be a complex Banach space with dim(X) > 2
and let T" be a nonscalar compact operator on X. We start with a reduction
step. Suppose that T has a nonzero eigenvalue \. We claim that the
eigenspace E) of this eigenvalue is a proper hyperinvariant subspace for T'.
To prove this, let A be a bounded operator such that A and T' commute and
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let © € E) be an eigenvector of T. It follows that T'(Az) = A(Tz) = MAx,
thus Az € E). So E, is an invariant subspace for A and therefore it is a
hyperinvariant subspace for 7. Since T is a nonscalar operator, it follows
that Ex # X. As Ey = (T — M)~'({0}), it follows from continuity of
T — M that E) is closed. Hence F) is a hyperinvariant proper subspace.
Furthermore, if T'/||T|| has a hyperinvariant subspace, then this is also a
hyperinvariant subspace for T'. So it suffices to consider compact operators
of norm 1 without nonzero eigenvalues.

Now assume that 7" has norm 1 and has no nonzero eigenvalues. By
Corollary 3.8, it follows that o(7") = {0} and thus that 7(7") = 0. Choose
xo € X such that | Tzl > 1. As ||T|| = 1, it follows that ||z > 1. Let
B be the closed unit ball centered at xy. It follows that 0 ¢ B and since
|T|| = 1, it also follows that 0 ¢ TB. For all y € X, we define

M,={Aye X : A€ B(X), A commutes with 7'} .

We claim that for all y € X, this is a hyperinvariant subspace for T. To
prove this, fix y € X and choose v,w € M,. By definition of M, this
implies there are bounded linear operators C' and D, commuting with T
such that v = C'y and w = Dy. Since for all a € C the operator aC' + D
commutes with 7', it follows that av +w = (aC + D)y € M,. Thus M, is
a linear subspace of X. Furthermore, if C' commutes with 7" and v € M,,
we can write v = Dy for some bounded linear operator D commuting with
T. As CD also commutes with 7', it follows that Cv = CDy € M,. So M,
is an invariant (but not necessarily closed) subspace for C' and therefore a
hyperinvariant (but not necessarily closed) subspace for T'. By Proposition
3.4, it follows that M, is a hyperinvariant subspace for T for all y € X.
The last step is to prove that there exists a y € X such that ﬁy is
a proper subspace of X. Since the identity operator I of X is bounded
and commutes with all operators, it follows that y € M, for all y € X.
Therefore, if y # 0 then it follows that M, # {0}. We are left with proving
that there exists a y € X \ {0} such that M, is not dense in X. We argue
by contradiction. Suppose that for all y € X \ {0} we have that M, is
dense in X. Then for all y € X \ {0} it follows that M, N By(zg) # 0. So
for all y € X, there exists a bounded linear operator A commuting with 7T
such that || Ay — zo|| < 1. For all A € B(X) commuting with 7', we define

UA) ={y € X : ||Ay — x| <1}

As each nonzero y € X is contained in at least one of these sets by our
previous remark and 0 is certainly contained in none of them as ||zg|| > 1,
it follows that the union of all 4 (A) is equal to X'\ {0}. Furthermore, as the
function f4 : y — [|Ay — xo|| is continuous for all A € B(X) and U(A) =
£1([0,1)), it follows that U (A) is open for all A commuting with 7. Since
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T is compact, TB is a compact subset of X \ {0}. So we can find bounded
operators Ay, ..., A, commuting with 7" such that {/(A,),...,U(A,)} forms
a finite cover of TB. Since Tzy € TB, there exists an i; < n such that
Txo € U(A;;). By definition of U(A;,), it follows that A;, Tzq € B and thus
TA; Txy € TB, so there exists an i5 < n such that TA; Txy € U(A;,). By
repeating this argument m times, we can construct a sequence {Z, }men
where z,,, = A; TA; .. ATxqg = A; A JALT™Mry € B If we set
¢ = max;<;<y | 4;||, it follows that

Tm—1"

[ | < [ Az, [[[]A AT ol < ™ [T™ [[llzoll = I(T)™ ol

Tm—1 H

Since r(T") = 0, Corollary 3.6 implies that

tim |z, || < Tim [(eT)"™[[[|o]| = 0.

This implies that 0 € B = B, which contradicts the definition of B. So
there exists a nonzero y € X such that M, is not dense in X. O

Corollary 3.9. Let X be a complex Banach space of dimension at least
2 and let T be a compact operator on X. Then T has a proper invariant
subspace.

Proof. We distinguish two cases: T is a scalar operator and 7T is a non-scalar
operator. If T'is a scalar operator, any linear subspace of X is an invariant
subspace for T. So for any one-dimensional subspace K C X it follows
that K is a proper invariant subspace for T'. If T' is a nonscalar operator,
Lomonosov’s theorem guarantees the existence of a proper hyperinvariant
subspace H C X for T. As T certainly commutes with itself, H is a proper
invariant subspace for 7. O

3.2 Nests of subspaces, simple, maximal and invariant
nests

In the previous subsection, we saw that compact operators on complex
Banach spaces have proper invariant subspaces if the dimension is at least
2. In the coming subsections, we will strengthen this statement vastly. In
this subsection, our main goal is to introduce nests and related concepts,
which allow us to prove Ringrose’s theorems.

Definition 3.10. Let X be a Banach space. A nest N is a set of linear
subspaces of X that is totally ordered by inclusion. If 7' is a bounded
operator on X and all subspaces L € N are invariant subspaces for 7', then
N is an invariant nest for T.
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Proposition 3.11. Let X be a Banach space and let N be a nest of sub-
spaces. Let Ny C N be a subnest and define

K= (] M andL= ] M
MeNy MeNy

Then L and K are subspaces of X and N U{K} and N U{L} are nests
of subspaces. Moreover, if T is a bounded operator and N is an invariant

nest, then so are NU{K} and N'U{L}.

Proof. By construction, it follows that L and K are closed subspaces of X.
We need to check whether VU {K} and N U{L} are totally ordered by
inclusion. First, consider VU {K}. As N is a nest, hence totally ordered
by inclusion, we only need to check whether for all N € N we either have
N C Kor K C N. Solet N € N be asubspace. If there exists an M € N
such that M C N, then it follows that K C M C N. If such M does not
exist, then for all M € Ny we have that N C M. It follows that N C K.
We conclude that N'U{K} is totally ordered by inclusion and thus a nest.
Now consider N'U{L}. By the same argument as above, we need to verify
whether for all N € N, we either have N C Lor L C N. Solet N € N/
be a subspace. If there exists a M € Ny such that N C M, then it follows
that N € M C L. If such M does not exist, then for all M € A, we have
that M C N. It follows that (Jy,cn, M C N. As N is closed, this implies
that L C N. We conclude that A'U{L} is totally ordered by inclusion and
thus a nest.

Now let T" be a bounded operator and suppose that N is an invariant
nest. To prove our last statement, it is only left to show that K and L
are invariant subspaces for T. As Ny C N is a subnest of an invariant
nest, it follows that TM C M for all M € N,. Suppose that z € K.
Then x € M for all M € N, and therefore Tz € M for all M € N,.
It follows that Tx € K, hence K is an invariant subspace for T. Now
suppose that z € L. By definition of L, this implies there exists a sequence
{Zp}nen in UMeNo M such that x, converges to x as n — oo. So for all
T, there exists an M € N, such that x,, € M. As N is an invariant nest,
it follows that Tz, € M C L. Using the continuity of 7', it follows that
Tx = lim,_o, T, € L = L. We conclude that both K and L are invariant
subspaces for T O

Definition 3.12. Let X be a Banach space and let AV be a nest of sub-
spaces. For all M € N, we define

M_=|J{LeN:L¢ M}

If the set {L € N': L C M} is empty, we put M_ = {0}. As M is closed,
it follows that M_ C M. We say that the nest N is continuous at M if
M_ = M and that N is continuous if it is continuous at all M € N.
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Proposition 3.13. Let X be a Banach space and let N be a nest of sub-
spaces. Let M € N be a subspace. If there exists a subspace L of X such
that M_ C L C M, then N'U{L} is a nest.

Proof. Suppose that there exists a subspace L of X such that M_ C L C
M. We need to check whether N'U {L} is totally ordered. Let N € N be
a subspace. We distinguish two cases: M C N and N C M. In the first
case, it follows that L € M C N, hence it follows that L C N. In the
second case, we have that N C M_ by definition of M_. It follows that
N C M_ C L. So we either have L. C N or N C L, which implies that
N U{L} is a nest. O

In Propositions 3.11 and 3.13, we encountered two ways to extend a
nest. This raises the question whether or not there are maximal nests;
nests that cannot be extended any further.

Definition 3.14. Let X be a Banach space. A nest N is mazimal if it is
not included in a strictly bigger nest. Furthermore, a nest N is simple if
it satisfies the following three properties:

1. {0} e N and X e NV.

2. For all subnests Ny C NV, we have that (o, M and Uy ep, M are
in \V.

3. dim(M/M_) <1 forall M € N.
A nest NV is complete if it satisfies the first two properties of a simple nest.

Remark. If N is a complete nest, then property 2 implies that M_ € N for
all M € N. Moreover, note that any simple nest is complete.

Before we proceed, we could wonder if such maximal nests do exist in
the first place. In Proposition 3.16 we will see they actually do. However,
the proof of this statement is very non-constructive in the sense that it
relies on Zorn’s lemma.

Lemma 3.15. Let X be a Banach space and I a totally ordered index set.
Let {N;}ier be an increasing chain of nests of X. Then N = ;. N is a
nest and Ny C N for alli € I. Moreover, if {N;}ics is an increasing chain
of invariant nests for some operator T on X, then N is also an invariant
nest for that operator.

Proof. We prove that N is a nest of subspaces of X. The second and
third claim then follow trivially. To prove N is a nest, we need to check
whether it is totally ordered with respect to inclusion. Let M, N € N be
two subspaces. By definition of N, there are i,j € I such that M € N
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and N € N;. As {N;}ics is an increasing chain of nests, we either have
N; C Nj or N; C N;. Hence, one of the two nests contains both N and M.
As nests are totally ordered, this implies that either N € M or M C N
should hold. We conclude that N is totally ordered, hence a nest. O]

Proposition 3.16. Let X be a Banach space. Then there exists a mazximal
nest of subspaces of X. Moreover, if M is a given nest, then there exists a
mazximal nest extending M.

Proof. Let X be a Banach space and let F be the set of nests of subspaces
of X. F is nonempty as it certainly contains the trivial nest {{0}, X}. F
is a partially ordered set with respect to inclusion. Furthermore, if 7y C F
is a increasing chain of nests, then by Lemma 3.15, Ny = Uy cr, N is an
upper bound of Fj in F. This implies that every increasing chain of nests
in F has an upper bound in F with respect to inclusion. Hence by Zorn’s
Lemma, there exists a maximal nest N, in F.

Now suppose that M is a given nest and let (M) be the set of nests
containing M. F(M) is nonempty as M € F(M). The same argument as
before now gives that F (M) has a maximal element M,,,,. We claim that
Mnae 18 also maximal in F. Suppose it is not, then there exists a nest M’ in
F such that M .. € M’. However, as this implies that M C M 0. T M/,
it follows that M’ extends M, in F(M), contradicting the maximality
of M az- O

We will study the connection between maximal and simple nests; they
will turn out to be the same thing. However, as property 3 of simple nests
suggests, we will need some properties of quotient spaces for this. We will
quickly revisit some standard results and some preparatory results we need.

If X is a vector space and M C X is a linear subspace, then M defines
an equivalence relation ~jy; on X via x ~j; y if and only if x —y € M.
With this definition, the quotient space X/M := X/ ~; has a vector space
structure if we define a(x+M) = az+M and (z+M)+(y+M) = (x+y)+M
[15, p. 50]. With these definitions, the quotient map p : X — X /M defined
by p(x) = x+ M is a linear map. If X is a normed space and M is a closed
subspace, then ||z + M| = infyep || — y|| defines a norm on X/M [15,
Theorem 1.7.4] and the quotient map p is a bounded linear operator with
Ip|| = 1if M # X [15, Proposition 1.7.12]. We also have that p maps the
open unit ball of X onto the open unit ball of X/M [15, Lemma 1.7.11].
Furthermore, if two of the three spaces X, M and X /M are complete, then
so is third [15, Theorem 1.7.9].

Proposition 3.17. Let X be a vector space and M C X a subspace. Let
p: X — X/M be the quotient map and let K C X/M be a subspace of the
quotient space. Then p~'(K) C X is a linear subspace.
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Proof. Choose x,y € p~}(K) and let a be a scalar. Then x + M € K and
y+ M € K, hence ax +y+ M € K as K is a linear space. We conclude
that p(axr+y) € K, hence ar+y € p~}(K). So p~!(K) is a linear subspace
of X. O]

Proposition 3.18. Let X be a vector space and suppose that M C N C
X are two subspaces. Then dim(N/M) > 1 if and only if there exists a
subspace L such that M C L C N. Moreover, if X is a normed space and
M and N are closed, L can also be chosen to be closed.

Proof. Let X be a vector space and suppose that M C N C X are two sub-
spaces. Suppose that dim(N/M) > 1. Then there exists a one-dimensional
subspace K C N/M. Let p: N — N/M be the quotient map restricted
to N. Set L = p~}(K) C X. By Proposition 3.17, L is a linear subspace
of N, hence of X. As dim(K) = 1, it follows that {0} C K. Combined
with surjectivity of p, this yields that M C L. As we also have that
K C N/M, using surjectivity of p again yields that L C N. We conclude
that M C L C N. If X is a normed space, closedness of L follows from the
fact that K is closed as it is finite-dimensional, hence by continuity of p it
follows that L is closed in N. As N is closed in X it also follows that L is
closed in X.

Conversely, if there exists a subspace L such that M C L C N, then
p(L) is a linear subspace of N/M such that {0} C p(L) € N/M. Hence
dim(N/M) > dim(p(L)) > 1. O

Proposition 3.19. Let X be a Banach space and let T be a bounded
operator on X. Let M C X be an invariant subspace for T. Then
there ezists a well-defined bounded linear operator Ty on X/M such that
Tyyop=poT. Moreover, if T is compact, then so is Th;.

Proof. Define Ty, : X/M — X/M by Ty (x+ M) = Tx+ M. We first need
to verify that Tj, is well-defined. Suppose that z,2’ € X with x + M =
2+ M, hence x — 2’ € M. As M is an invariant subspace for T, it follows
that Te — Ta' =T(x — ') € M, hence Tx + M = Tx' + M. We conclude
that Ty(x + M) =Tx + M = Tx' + M = Ty (2" + M), hence Ty, is well-
defined. By definition of p, it directly follows that Th; op = poT. For
linearity of Ty, let a be a scalar and let = + M, y+ M € X/M. Then

Ty(a(z+ M)+ (y+ M)) =Ty(ax +y+ M)
=T(ax+y)+M
=adlx+Ty+ M
=aTy(x+ M)+ Tyly + M),

hence T}y is linear. To prove that T}, is bounded, we calculate the operator
norm. For this, we need the fact that the quotient map p maps the open
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ball B,(0) in X onto the open ball B/(0) in X/M. Let € > 0. It follows
that

Tyl = sup ||[Tu(z+M)|| <  sup ||[Tu(x+ M)
llz+M||<1 llz+M||<14€
= sup |[[Tu(p(x))||= sup |p(Tx))]
llzll<1l+e lz||<14e

< [T (L +€),

where ||p|| is equal to 0 or 1 depending on whether M = X or M # X. As
this holds for all € > 0, it follows that || T || < ||p||/|T|| = ||T’|| unless p = 0.
Hence T}, is a well-defined bounded linear operator on X /M.

Now suppose that T" is a compact operator. To prove that T}, is compact
too, we show that for each bounded sequence {z, + M },cn in X/M, the
sequence {Tys(x,+M)},en has a convergent subsequence. Let {x,+ M },en
be a bounded sequence in X /M. By definition of the quotient norm, we can
find a sequence {y, tnen in M such that ||z, —y|| < [|z,+M]||+1. It follows
that {2, — Yn nen is a bounded sequence in X. As T is a compact operator,
poT = Ty opis also compact. It follows that {Th o p(x,, — yn) }nen =
{Tn(xn+M)}nen has a convergent subsequence. So Ty is compact too. [

These intermediate results allow us to prove that maximal and simple
nests are the same. To prove this, we follow Ringrose [20].

Theorem 3.20 (|20, Lemma 1]). Let X be a Banach space. A nest of
subspaces of X is maximal if and only if it is simple.

Proof. Let X be a Banach space and let N be a nest of subspaces. Suppose
that A is maximal. We check that N satisfies the three properties of simple
nests. It is obvious that we have {0} € M and X € N, otherwise N could
have been extended by adding {0} or X, contradicting the maximality. By
the same argument it follows that A must also satisfy the second property
of simple nests. Suppose it does not. Then there exists a subnest Ny C N/
such that (Vy;ens M or Upsen, M is not in N By Proposition 3.11, it
follows that we can extend N, contradicting the maximality. So N satisfies
the first two properties of simple nests. For the third, suppose there exists
a M € N such that dim(M/M_) > 1. By Proposition 3.18, it follows
there exists a subspace L such that M_ C L C M. Hence by Proposition
3.13, we can extend N by L, contradicting the maximality of A/ again. So
dim(M/M_) < 1 for all M € N and therefore N is simple.

Conversely, suppose that N is simple but not maximal. This implies
there exists a subspace L of X such that L ¢ N and N U {L} is a nest.
Define

M=({NeN:LCN} and M = {NeN:NCL}

46



Note that both M and M’ are well-defined as both sets {N € N': L C N}
and {N € N : N C L} are nonempty since {{0}, X} C N by the first
property of simple nests. By the second property of simple nests, it follows
that M, M’ € N and by construction it follows that M" C L C M. The
inclusions must be strict as L ¢ N. We claim that M’ = M_. The inclusion
M’ C M_ follows from the fact that N C L implies that N C M. Hence

M= {NeN:NcL}c| {NeN: NCM}=M_

Conversely, suppose that N € A and N C M. As L C N implies that
M C N, it follows from contraposition that N C M implies N C L, hence

M_=|J{NeN:NcM}c| {NeN:NCL} =M

It follows that M’ = M_ and thus we have that M_ C L C M. By
Proposition 3.18, it follows that dim(M/M_) > 1, contradicting the third
property of simple nests. Hence A/ must be maximal. O

Combining Proposition 3.16 with Theorem 3.20, we can conclude that
maximal nests exist in each Banach space X and that we know quite some
things about the properties they should have. For our study of the eigen-
values of compact operators, simple nests of invariant subspaces will turn
out to be useful. The reason for this might not be obvious at all and is hard
to explain with the current results. A detailed explanation will be given in
the next subsection. However, before we proceed we should clarify whether
such simple nests of invariant subspaces exist. This will be discussed in the
next theorem, which is also due to Ringrose [20].

Theorem 3.21 ([20, Theorem 1]). Let X be a complex Banach space and
let T' be a compact operator on X. Then there exists a simple nest of
imwvariant subspaces for T'.

Proof. Let X be a complex Banach space and let T be a compact operator
on X. Let Fr be the set of all invariant nests for T'. Fr is nonempty as
it contains the trivial nest {{0}, X'} since both {0} and X are invariant
subspaces for T'. Fr is a partially ordered set with respect to inclusion.
Furthermore, if Fy C Fr is a increasing chain of nests, then by Lemma
3.15 it follows that Ny = ez, N is an upper bound of Fy in Fp. This
implies that every increasing chain of nests in Fr has an upper bound in
Fr with respect to inclusion. By invoking Zorn’s Lemma, there exists a
maximal nest N,,q, in Fr.

We claim that N, is simple. We prove this by verifying the three
properties of simple nests separately. As {0} and X are certainly invariant
subspaces for 7', and we can extend any nest by both of them, it directly
follows that N4, should contain both {0} and X and thus satisfies the
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first property of simple nests. Let Ny C N, be a subnest of invariant
subspaces for T'. Define

K= (] M,andL= |J M.
MeNy MeNy

By Proposition 3.11, it follows that N,a, U {K} and N, U {L} are in-
variant nests too. Hence by maximality of N,,., it follows that L, K €
Ninaz- S0 N also satisfies the second property of simple nests. It is
left to prove that for all N € N4, we have that dim(N/N_) < 1. We
argue by contradiction. Suppose that there exists an N € N4, such that
dim(N/N_) > 1. As N is a closed subspace of X, it follows that N is a
Banach space. Furthermore, as N is an invariant subspace for 7', we can
restrict the map T to N and view T': N — N as a compact linear map
on the Banach space N. By Proposition 3.11, it follows that N_ C N is
an invariant subspace for the restriction of 7' to N. Using Proposition 3.19
with X = N and M = N_, we obtain a compact linear operator Ty on
N/N_ such that Ty op =poT where p: N — N/N_ is the quotient map.
Since dim(N/N_) > 1, Corollary 3.9 guarantees there exists a proper sub-
space Ly C N/N_ that is invariant under Ty. Define L = p~*(Ly). Then
by Proposition 3.17 and by continuity of p, it follows that L is a closed
subspace of N and hence of X. Furthermore, since {0} C Ly € N/N_ and
p is surjective, it follows that N_ C L C N.

To get our contradiction, we show that Ny, U{L} is an invariant nest
for T, contradicting the maximality of N,,.,. By Proposition 3.13 and the
fact that N_ C L C N, it follows that N, U{L} is a nest of subspaces.
To prove that N,,.. U {L} is an invariant nest, it is left to prove that L is
an invariant subspace for 1. Let x € L be arbitrary. By definition of L, it
follows that p(z) € Ly and hence that Tyop(x) € Ly as Ly is an invariant
subspace for T. Using Proposition 3.19, it follows that poT'(z) € Ly and
therefore that T'(z) € p~'(Ly) = L. Hence L is an invariant subspace for
T. O

3.3 Diagonal coefficients and eigenvalues of compact
operators on complex Banach spaces

In the previous section, we saw that if T"is a compact operator on a complex
Banach space X, there exists a simple nest of invariant subspaces for that
operator T' (Theorem 3.21). We will use this to study the eigenvalues of
these compact operators. As we will need the existence of simple invariant
nests, we will from now on assume that all Banach spaces are complex.

If X is a vector space and L C X has codimension 1, it follows from
linear algebra that for all z € X \ L the vector spaces X and Cz & L
are isomorphic, with ® : Cx & L — X defined by (az,y) — azx + y as
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linear isomorphism. Let X be a Banach space, T" a compact operator on
X and N a maximal invariant nest for 7. It follows that for all M € N
with dim(M/M_) = 1 and for all x € M \ M_ the vector spaces M and
Cx @ M_ are isomorphic. Note that by the Bounded Inverse Theorem, this
is also an isomorphism of Banach spaces. Since M is an invariant subspace
for T', we have that Tx € M. It follows that for all z € M \ M_ there
exists a unique a, € C and y, € M_ such that Tx = a,x + y,.

Proposition 3.22. Let X be a Banach space, T a compact operator on
X and N a mazimal invariant nest for T. Let M € N be an invariant
subspace for T such that dim(M/M_) = 1. For xz,x’ € M \ M_, write

T = azx + vy, and Tx' = apx’ + ypr with Yz, yr € M_. Then o, = oy

Proof. Let x,2’ € M\ M_ and let p be the quotient map from M to M/M_.
It follows that p(x),p(a’) # 0. As dim(M/M_) = 1, there exists a nonzero
v € C such that p(z) — yp(2’) = p(xr — vy2’) = 0. So x — 2’ € M_ and
as M_ is an invariant subspace for T by Proposition 3.11, it follows that
T(x —~a') € M_. So it follows that

poT(x —vz') = plawt + yo — V(' +yur)) = 0.

Rewriting yields that a,p(x) —yap(z') = (az—aw)p(x) = 0. Asp(z) # 0,
it follows that o, = a,. O

Corollary 3.23. Let X be a Banach space, T a compact operator on X
and N a mazimal invariant nest for T. Then for all M € N there exists
a complex scalar cpy such that for all x € M there exists a y € M_ such
that Tx = apyx +y. Moreover, if dim(M/M_) = 1, this aypy is uniquely
defined.

Proof. We distinguish two cases: dim(M/M_) = 0 and dim(M/M_) = 1.
If dim(M/M_) =0, put apy = 0. As M = M_, it follows that for all z € M
we have that Tx € M = M_. Hence Tx = 0x + Tz, with Tx € M_. So
ayr = 0 works.

If dim(M/M_) = 1, pick x € M \ M_ and define apy = . By
Proposition 3.22, it follows that for all ' € M\ M_, there exists ay € M_
such that T2 = aprx +y. Now suppose that x € M_. This implies that
Tx € M_ as M_ is an invariant subspace for T, hence Tz — ayx € M_. So
there exists a y € M_ such that Tx = apx + y. We conclude that for all
x € M there exists a y € M_ such that T'xr = ay;r + y. Uniqueness of ajy
follows from the fact that «, is uniquely determined for all x € M \ M_
since M is isomorphic to Cx & M_. O

Definition 3.24. Let X be a Banach space, T' a compact operator on X
and N a maximal invariant nest for 7. For all M € N the complex scalar
ayy as constructed in the proof of Corollary 3.23 is the diagonal coefficient
of T at M.
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Remark. Note that if aps # 0, it follows that dim(M/M_) = 1. Further-
more, note that from Corollary 3.23 it follows that the scalars a,; behave
somewhat like the diagonal coefficients of an upper triangular matrix. To
illustrate this, consider the vector space C" for some natural number n € N.
Let B = {ey : 1 < k < n} be the standard basis of C" and define the sub-
spaces Ej = span(ey, ..., ex). It follows that N = {{0}, Fy, ..., E,_1,C"} is
a maximal nest of subspaces. Let A € M, +,(C) be an upper triangular
matrix, so A = {ay ;- with a;; = 0if i > j. Let k < n and let x € E},
be an arbitrary vector. It follows that there are scalars {z; };?:1 such that

. k .
we can write z = . zje;. If we let A act on x as matrix, we see that

k k k J k J
Ar = A E zje; | = E xjAej; = g z; E ajje; = E g Tjaie
j=1 j=1 =1

j=1 j=1 I=1
E k k k k-1 k

= g E Tiaje; = E e E Tjap; = Qpplrey + E € g xja;
I=1 j=I =1 j=l =1 j=l

k—1 k
= appT + E e | —arpx; + E ZTiap | -
=1 j=l

As the last term lies in Ej_q, it follows that for all x € FE,, there exists
ay € FE,_1 such that Ar = agpx + y, where ag; is the k-th diagonal
coefficient of the matrix A. Note that this is precisely the sort of equation
as in Corollary 3.23 with ap, = ag; and M_ = Ej_; = Ej,_. This explains
why the scalars a;, are called diagonal coefficients. It also follows that
N is an invariant nest for A and we know that the diagonal coefficients
{a;; }7_, are precisely the eigenvalues of A. This also explains why we expect
invariant nests and diagonal coefficients to be important when studying the
eigenvalues of compact operators.

To state the theorem that will be our main goal of this section, we need
some more definitions and lemmas. We begin with the following well-known
lemma from F. Riesz, the proof of which can be found in Megginson.

Lemma 3.25 (Riesz’ Lemma [15, Lemma 3.4.18]). Let V' be a normed
space and let W C V' be a proper closed subspace. Let 0 € (0,1). Then
there ezists a unit vector x € V' such that ||x — y|| > 0 for ally € W.

Lemma 3.26 (|20, Lemma 2]). Let X be a Banach space, T a compact
operator on X, N a simple invariant nest for T and € > 0. Define Ny C N

by
No={M e N :|ay| > €}.

Then Ny contains only finitely many invariant subspaces for T.
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Proof. We will argue by contradiction. Suppose that Nj is infinite. As
ay # 0 for all M € N, it follows that dim(M/M_) = 1 for all M € Nj.
Hence M is a normed space and M_ C M is a proper closed subspace for
all M € Ny. Let M € Ny be an arbitrary subspace. Using Riesz’ Lemma,
we can find a unit vector zy; € M such that ||zy —y|| > 5 for all y € M_.
As N is infinite, we can extract a strictly increasing sequence {M, },en
from Ny. As all z), are unit vectors, the sequence {zy, }rnen is bounded.
We claim that the sequence {1z, }nen has no convergent subsequence,
contradicting the compactness of T'. Suppose that k,1 € N and that k # .
As N is a nest, we either have M}, C M; or M; C My, depending on
whether £ < [ or | < k. Without loss of generality, we can assume that
My, € M,;. In particular, it follows that M, C M;_. As M is an invariant
subspace for T', it follows that T'zy, € M; C M;_. By Corollary 3.23, it
follows that there exists a ya, € M;_ such that T2y, = a2, +yar,. From
this, it follows that

||TZMZ - TZMkH = ||aMlZMz T Ym — TZMkH
= lon Nz, + oy (yar, = T2ag, )|
> EHZMZ + O‘]T/[ll(yMl - Tsz)H > 567
where the last inequality follows from the fact that o@[ll (ym, — Tzmp,) €

M;_. Hence {T'zp, }nen has no convergent subsequence, contradicting our
assumption that T is compact. So Ny must be finite. n

Definition 3.27. Let X be a Banach space, T' a compact operator on X
and N a maximal invariant nest for 7. For a scalar @ € C, we define the
diagonal multiplicity d, to be the number of subspaces M € N such that
ay = «, where we allow d, = oco.

Corollary 3.28. Let X be a Banach space, T a compact operator on X
and N a maximal invariant nest for T. Then every nonzero scalar o € C
has a finite diagonal multiplicity.

Proof. For all nonzero o € C, there exists an ¢ > 0 such that € < |a|. The
statement now follows directly from Lemma 3.26. m

The main goal of this section will be to connect the nonzero eigenvalues
of a compact operator to its diagonal coefficients. To do this properly, we
first need to discuss the multiplicity of eigenvalues. In linear algebra, if
we have a linear operator T acting on a finite-dimensional space and an
eigenvalue \, we define the geometric multiplicity of A to be the dimension
of the corresponding eigenspace and we define the algebraic multiplicity to
be the dimension of the corresponding generalized eigenspace. However,
when we try to generalize these definitions to arbitrary linear operators
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on possibly infinite dimensional spaces, some caution is required as these
quantities may be infinite. We will see, however, that for compact operators
these definitions always make sense and are finite. We will cite some results
without giving proof, these are due to Zaanen [23].

Definition 3.29. Let T be a compact operator on a Banach space X. Let
A be a nonzero scalar. For all natural numbers n, we define the subspaces
M, =ker((T — AXI)") and L, = (T — A\I)"X.

Remark. Tt is obvious that using the definition above, the sequence { M), } ,en
is an increasing sequence of closed subspaces of X and that {L,}.en is a
decreasing sequence of subspaces of X. Theorem 2 from Zaanen [23, p. 332]
guarantees that L,, is also a closed subspace of X for all natural numbers
n. Furthermore, using the binomial expansion, (7" — AI)" can be writ-
ten as S, + (—A)"I for some compact operator S,. It follows that M, is
the eigenspace of the compact operator S,, corresponding to the eigenvalue
—(=A)™. Therefore M, is finite-dimensional for all n € N.

Definition 3.30. Let X be a Banach space and let T' be a compact
operator on X. Let A be a nonzero scalar and let {M,, },en be the sequence
of subspaces from Definition 3.29. We define the geometric multiplicity of
A as dim(M;) and the algebraic multiplicity of A as dim (U, oy M)

So far, we have not done much. The multiplicities defined in Definition
3.30 are just straightforward generalizations of the standard definitions in
linear algebra. By construction, it is clear that the geometric multiplicity
is finite for any nonzero scalar. However, we are primarily interested in the
algebraic multiplicities of nonzero scalars and it is not at all obvious from
the definition that these should be finite. The following two theorems from
Zaanen show how the two sequences from Definition 3.29 are connected
and that the algebraic multiplicity is indeed finite for any nonzero scalar.

Theorem 3.31 ([23, Theorem 6 + 7, p. 334 - 336]). Let X be a Banach
space and let T be a compact operator on X . Let \ be a nonzero scalar and
let {M,}nen and {L,}nen be the sequences of subspaces from Definition
3.29. Then there exists a natural number v = v(\) such that M, = M,
and L, = L, for all n > v, whereas M, is proper subspace of M, and
L,1 is proper subspace of L, forn < v.

Definition 3.32. Let X be a Banach space and let T' be a compact
operator on X. Let A be a nonzero scalar and let {M,, } ,en and { L, },en be
the sequences of subspaces from Definition 3.29. Then the natural number
v = v(A) from Theorem 3.31 is the indezx of X relative to T.

Corollary 3.33. Let X be a Banach space and let'T" be a compact operator
on X. Then any nonzero scalar X\ has finite algebraic multiplicity.
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Proof. Let { M, },en be the sequence of subspaces from Definition 3.29 and
let v be the index of A relative to T'. It follows directly from Theorem 3.31
that dim (U, ey M») = dim(M,) < co. Hence the algebraic multiplicity of
A is indeed finite. O

Theorem 3.34 (23, Theorem 8, p. 336]). Let X be a Banach space and let
T be a compact operator on X. Let X be a nonzero scalar and let { M, }nen
and {L,}nen be the sequences of subspaces from Definition 3.29. Let v be
the index of X relative to T'. Then the Banach spaces X and L, & M, are
1somorphic.

Our main goal in this section will be to prove the following Theorem,
which is also due to Ringrose. It connects the nonzero diagonal coefficients
of a compact operator to its nonzero eigenvalues.

Theorem 3.35 ([20, Theorem 2|). Let X be a complex Banach space, T a
compact operator on X and N a simple invariant nest for T. Then:

1. A nonzero scalar A € C is an eigenvalue of T if and only if it is a
diagonal coefficient of T

2. The diagonal multiplicity of a nonzero scalar A € C is equal to its
algebraic multiplicity as an eigenvalue of T'.

3. T is quasi-nilpotent if and only if cayy = 0 for all M € N.

By combining the third statement of Theorem 3.35 with Corollary 3.23,
we get the following result.

Corollary 3.36. Let X be a complex Banach space, T a compact operator
on X and N a simple invariant nest for T. Then T is quasi-nilpotent if
and only if TM C M_ for all M € N

The proof of Theorem 3.35 will primarily be divided into a few proposi-
tions. We will start by showing that each nonzero diagonal coefficient is an
eigenvalue. Then we prove the converse statement, which is significantly
more work. Together, these prove the first point of Theorem 3.35. Then
we prove the second statement. The third statement then easily follows
from the first.

Proposition 3.37 (|20, Lemma 5]). Let X be a Banach space, T a compact
operator on X and N a simple invariant nest for T. Let M € N be
arbitrary. If ay # 0, then ayr is an eigenvalue of T.

Proof. Suppose that apr # 0. As apy # 0, it follows that dim(M/M_) = 1.
As M is an invariant subspace for T, we can consider the restriction 7" of
T to M. By Corollary 3.23, it follows that (7" — ap Iy )M C M- C M.
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Hence T' — apr 1 is not surjective. As T : M — M is a compact operator
on the complex Banach space M and «, is a nonzero scalar, it follows from
the Fredholm alternative (Theorem 3.7) that 7" — a, Iy, has a nontrivial
kernel. Hence aj; is an eigenvalue of T'. As T" is a restriction of T', this
implies that «;; is an eigenvalue of T O]

Lemma 3.38. Let C' be a compact topological space, I a totally ordered
indexing set and let {S;}ic;r be an increasing or decreasing filtration of

nonempty closed subsets of C. Then (;c; S; is nonempty.

Proof. Suppose [;c;S; is empty, then by using one of De Morgan’s laws,
we get that
c=c\(s:=lJc\s.
iel iel
We see that {C'\ S;}ier is a cover of open sets of C. As C' is compact, this
implies there exists a finite subset {iy,...,ix} C I, such that

N N
C=JC\S, =C\ (5.
k=1 k=1

From this we can conclude that ﬂszl Si, = 0. However, as {S;}ics is
an increasing or decreasing filtration, there exists an integer j such that
1<j<NandS; = ﬂ]kvzl Si, = 0, which is a contradiction. O

Proposition 3.39 (|20, Lemma 3]). Let X be a Banach space, T a compact
operator on X and N a simple invariant nest for T. Let M € N be an
invariant subspace for T and let § > 0. Then there exists a subspace L € N'
such that L C M and such that for all x € M_ we have that

[Tz + Ll < 6|zl

where || - || is the quotient norm on X/L.

Proof. We distinguish two cases: dim(M/M_) =1 and dim(M/M_) = 0.
If dim(M/M_) =1, then set L = M_. As M_ is an invariant subspace for
T, it follows that ||Tx+M_|[pr. = ||04+M_||ar. =0 < 6||z| for all z € M_.

Now suppose that dim(M/M_) = 0. We argue by contradiction, so
suppose that such L does not exist. Define

N():{LENZLQM}.

By assumption it follows that for all L € N, there exists an € M_ such
that [Tz + L||;, > 0||x||. As this clearly does not hold for z = 0, we can
divide by ||z|| to obtain a unit vector ' € M_ such that || T2’ + L||, > .
So the set

Sp={zeM_:|z|=1, |[Tz+ L||L >}
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is nonempty for all L € Ny. We claim that the filtration {Sp}ren; is
decreasing. Let K, N € N and suppose that K € N. Let y € X be
arbitrary, by definition of the quotient norm, it follows that

Iy + Kl = inf lly — 2] > inf ly — 2] = lly + Nl

So if x € Sy, then |z|| = 1 and |7z 4+ N||y > d, hence |Tx + K||x >
|Tx + N||ny > 6. Therefore it follows that x € Sk and thus we have that
Sy C Sk. It follows that {Sr}ren; is indeed decreasing. Let S be the
unit sphere in X, then by definition of Sy, it follows that S;, C S for all
L € Ny. As S is bounded, the set C = TS is compact by compactness
of T'. Furthermore, {T'SL.}Len; is a decreasing filtration in 7°S and hence
{TSL} e, is a decreasing filtration of closed sets in C. By Lemma 3.38, it
follows that (7, . No TS}, is nonempty. So there exists an xy € X such that
2o € Npen, 1S € M.

Let L € Ny be arbitrary. It follows that 2y € TSy, hence there exists
a sequence {Z, }nen in St such that {T'z,}n,en converges to zg as n — oo.
As x, € S, for all n € N, it follows that || Tz, + L||, > ¢ for all n € N.
By taking the limit as n — oo, it follows that ||xo + L]z, > 6. So we have
that [|[zo + L[|, > d for all L € Ny. As v € M_ = J ¢y, L, there must be
a sequence {Yy pnen in Uy, L converging to xg. In particular, there must
exist an L € Ny and a y € L such that ||zg — y|| < 0, contradicting that
|lzo + L|| > 6 for all L € N. O

Proposition 3.40 ([20, Lemma 4]). Let X be a Banach space, T a compact
operator on X and N a simple invariant nest for T. Let A € C be a nonzero
eigenvalue of T and x € X be a corresponding nonzero eigenvector. Let

M={LeN:zel}
and define M = (\pep, Lo Then M € N, dim(M/M_) = 1 and ayr = M.

Proof. The fact that M € N follows directly from the second property of
simple nests. We first prove that dim(M/M_) = 1. We argue by contra-
diction. Suppose that dim(M/M_) =0, hence M = M_. Let 0 < § < 3|A|.
Then by Proposition 3.39, there exists a subspace L € N such that L C M
and ||Tz + L||, < 6]z]| for all z € M_. As L C M, it follows that = ¢ L.
This implies that Cz N L = {0}, hence we can view K = Cz @ L as a
subspace of X. K is a normed space and L C K is a closed subspace of
codimension 1. Using Riesz’ lemma, there exists a unit vector 3’ € K such
that ||y’ — z|| > 2 for all z € L. As dim(K/L) = 1 and z,y' ¢ L, there
exists a nonzero v € C such that x — vy’ € L. Let y = vy’. Then it follows
that |y + L. = |||y’ + Ll = 2]7] = 2|ly|. Hence y € X is a vector such
that z —y € L and ||y|| < 2|ly+ L[| < 2|ly+L||r = 2|z + L||1. As Lis an
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invariant subspace for T, it follows that Tx — Ty € L. Therefore, we also
have

Ty— X y=Tx— v+ (Ty—Tx — Iy + \z)
=Ty—Tr—\Ny—=z) €L,

hence Ty + L = A(y + L). It follows that

1
1Ty + Lllz = [Ally + Ll > 5[yl > olly]]-

However, as y € M = M_, this contradicts the assumption on L that
|Tz+ L||p < d]|z| for all z € M_. Therefore it must be the case that
dim(M/M_) = 1.

As dim(M/M_) = 1 implies that M_ C M, it follows that x ¢ M_. So
M = Cx @& M_ as vector space. This implies that Ax = Tx = ayr + y,
for some y, € M_. As M = Cx @& M_, it directly follows that y, = 0 and
ay = A, which completes the proof. O

Lemma 3.41. Let V' be a vector space over F and let d € N be such that
d < dim(V). Suppose that we have d linear functionals {¢;}%_,. Then

Mz ker(i:) # {0}

Proof. We argue by contradiction, so suppose that ﬂle ker(yp;) = {0}. Let
the linear map ® : V — F? be defined by ®(z) = (¢1(2),...,¢q(x)). By
assumption, it follows that ® is injective. Define W = ®(V) C F¢. As & is
injective, it follows that W ~ V and therefore that dim(V') = dim(W) <
dim(F?¢) = d, contradicting dim(V') > d. O

Proposition 3.42 ([20, Lemma 6]). Let X be a Banach space, T a compact
operator on X and N a simple invariant nest for T. Let A € C be a
nonzero scalar. Then the diagonal multiplicity of X is equal to its algebraic
multiplicity as an eigenvalue of T

Proof. Let d be the diagonal multiplicity of A\, m the algebraic multiplicity
of X\ and let v be the index of A relative to T. If v = 0, then \ is not an
eigenvalue of T" and therefore by Proposition 3.37, it also follows that A is
not a diagonal coefficient. Hence m = 0 = d. Now suppose that v # 0. We
start with a reduction step. We claim that it suffices to prove the lemma
for v = 1. So suppose the result is true for v = 1. As T and [ commute,
we can use the binomial theorem to expand (7" — A)” = S — pl where
= —(=A)" and S is a compact operator, a polynomial in 7. As X is an
eigenvalue of T', it follows that (7'— A\I)” = S — ] has a non trivial kernel.
So p is a nonzero eigenvalue of S. Furthermore, we have that

ker((S — pl)?) = ker((T — M)*) = ker((T — M\)”) = ker(S — pl).
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Hence the index of p relative to S equals 1 and the algebraic multiplicity
of p is also equal to m. As S is a polynomial in T', all spaces M € N are
also invariant subspaces for S. This implies that we can define the diagonal
coefficients {o s} pren of S according to Definition 3.24. By definition of the
diagonal coefficients {aps}rren of T, it follows that for all M € N and for
all v € M\ M_ we have that (T — )z = (ap — N)x+y; withy; € M_. As
M _ is also an invariant subspace for T'— A1, it follows by induction that for
all n € N, there exists a y,, € M_ such that (T"— A\ )"z = (ap — A\)"T + Yy.
So

St =pr+ (S —pulz =px+ (T — X))’z = (u+ (ap — Nz + y,.

Asy, € M_, it follows by definition of the diagonal coefficients that we have
oy = i+ (ap — N)Y. Hence oy = pif and only if ap; = A and therefore
the diagonal multiplicity of u is also equal to d. As the index of u relative
to S equals 1, it follows by assumption that the diagonal multiplicity of
is equal to the algebraic multiplicity of u, hence m = d. So it also follows
that the diagonal multiplicity of X is equal to the algebraic multiplicity of
A. Hence it indeed suffices to prove the lemma for the case v = 1.

So now moreover suppose that v = 1. We need to prove that m = d.
Denote the kernel of T'— \I with N. By compactness of T, it follows that
N is finite-dimensional and by definition of the algebraic multiplicity, it
follows that dim(/N) = m. For all nonzero x € N, define

M(x):ﬂ{LGN:IGL}.

From Proposition 3.40, we conclude the following: M(z) € N, anm) = A,
dim(M(x)/M_(z)) =1 and 2 € M(z)\ M_(x). Now suppose that M € N/
and that apr = A. We claim that there exists an £ € N such that M =
M (z). To prove this, we consider the restriction of 7' to M, which we will
denote by T". As M is closed in X, it follows that 7" : M — M is a compact
map on the Banach space M. Furthermore, denote the restriction of the
identity map to M by Ip;. As ap = A # 0, it follows that dim(M/M_) = 1.
So since (T" — My )M C M_, it follows that T — A, is not surjective. It
then follows by the Fredholm alternative that T — Al is not injective. So
A is an eigenvalue of T”. As the index of \ relative to T equals 1, it follows
that

ker((T' — My )?) = M Nker((T—M)?) = M Nker(T — ) = ker(T' — X y).

We conclude that the index of X relative to T” is also equal to 1. Let Ny,
and Wy, be the kernel and image of T — I}, respectively. Then W), =
(T" — My )M C M_ and by Theorem 3.34 we also have that Ny & Wy
is isomorphic to M. It now follows that there exists an eigenvector x €
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NyN(M\M_). Suppose NyyN(M\M_) = (). This implies that Ny, C M_,
which would imply that Ny, & Wy, € M_ C M, which contradicts the
fact that Ny, & W)y, is isomorphic to M. So pick a nonzero eigenvector
x€ NynN(M\M_). Asx € M, it follows that M(x) C M. Moreover, as
x & M_, it also follows that M_ C M(z). Together with dim(M/M_) =1,
this implies that M = M(x).

We now prove that m > d. Let My C ... C M, be the d subspaces
of N that have \ as diagonal coefficient. By our previous argument, we
can find nonzero eigenvectors xy,...,zy € N such that M; = M(z;) for
1 < i < d. Now suppose that for some ¢ we have that x; is a linear
combination of x1, ..., x;_1. As xq,...,x;_1 € M;_4, it follows that z; € M;_,
and hence that M; C M;_;. This is in contradiction with M; C ... C M,
and therefore x1,...,z4 € N must be linearly independent. We conclude
that m = dim(N) > d.

To prove the other inequality, we again argue by contradiction. Suppose
that m > d. As M; = M(x;) implies that x; € M, \ (M;)_, it follows
that M; and Cz; @ (M;)_ are isomorphic as Banach spaces. Hence by
applying the Hahn-Banach theorem, there exist linear functionals ¢; such
that ¢;(x;) # 0 and (M;)_ C ker(y;) for 1 < i < d. Soif x € M; and
wi(x) = 0, it follows that x € (M;)_. By Lemma 3.41, applied to V' = N,
there exists a nonzero eigenvector x € (),.,.,ker(y;) and by Proposition
3.40, it follows that apsim) = A. So there exists a 1 < j < d such that
M(x) = M(z;). As p;(x) =0, it follows that x € M_(z;) = M_(z), which
contradicts that © € M(x) \ M_(x). We conclude that d > m. Together
with the previous inequality, this proves that m = d. O

Proof of Theorem 3.35. Let X be a complex Banach space, T" a compact
operator on X and A a simple invariant nest for T". By Propositions 3.37
and 3.40, it follows that a nonzero scalar A € C is an eigenvalue of T if
and only if it is a diagonal coefficient of T'. This proves the first part. The
second part of the theorem is precisely given by Proposition 3.42.

The only statement left to prove is the third. By Corollary 3.8, it follows
that T is quasi-nilpotent if and only if it has no nonzero eigenvalues. By the
first statement of this theorem, it follows that T has no nonzero eigenvalues
if and only of ap; = 0 for all M € N. Hence T is quasi-nilpotent if and
only if apy = 0 for all M € N. O
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4 Equivalence of the Lidskii property and
the nest approximation property

In this section, the extensive theoretical preparations we went through in
the first three sections will be used to prove our final result. We will prove
that for every complex Banach space satisfying the approximation property,
the Lidskii property (LP) and the nest approximation property (NAP) are
equivalent. This is a very recent result, first published in 2016 by Figiel and
Johnson [6]. In this section, we will first discuss the two properties. Then
we will prove the equivalence of these properties following the proofs in [6].
In this section, unless stated otherwise, all Banach spaces are assumed to
be complex and satisfy the approximation property. This is to ensure that
the nuclear trace is well-defined and that Theorem 3.35 applies.

4.1 The Lidskii property and the nest approximation
property
4.1.1 The Lidskii property

It is a well-known fact from linear algebra that the trace is equal to the sum
of the eigenvalues (counted with algebraic multiplicity) for linear operators
on finite-dimensional vector spaces. In 1959, Lidskii proved that a similar
statement holds for the so-called trace-class operators on a Hilbert space
[12]. This is therefore called Lidskii’s theorem. The Lidskii property is the
result of trying to generalize this theorem to arbitrary Banach spaces.

To introduce the Lidskii property, suppose that X is a complex Banach
space and that 7" is a compact operator on X. Let N be a simple invariant
nest for T'. From Lemma 3.26, it follows that the subnest

NOI{MEN:‘CYM’>O}

is countable. Hence the set {ays}aen;, of all nonzero diagonal coefficients,
counted according to diagonal multiplicity, is countable. Combined with
Theorem 3.35, it follows that {caas} pen; is the set of all nonzero eigenvalues
of T, counted according to algebraic multiplicity. We can summarize this
in the following proposition.

Proposition 4.1. Let X be a complex Banach space and T a compact
operator on X. Let N be a simple invariant nest for T. Then the nest

M ={M e N : |ay| > 0}

1s countable. This implies the set of nonzero eigenvalues, counted according
to their algebraic multiplicity is countable, hence this can be written as
{M\k}tres, where either J = N or there exists an N € N such that J =
{1,...,N}.
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Remark. 1. There are other ways to prove that compact operators have
countably many eigenvalues, without appealing to nests or Theorem
3.35. See for example Megginson [15, Theorem 3.4.23] or Conway |[2,
Theorem 7.1] for two different approaches.

2. If T is an operator and we write the set of eigenvalues of T" as {\; }re,
then the eigenvalues are always counted according to their algebraic
multiplicity. Furthermore, we always assume J to be defined as in
Proposition 4.1.

Definition 4.2. Let X be a complex Banach space satisfying the approxi-
mation property. X satisfies the Lidskii property if for all nuclear operators
A with absolutely summable eigenvalues {Ax}res, the following equality

holds:
Tr(A) =) A
keJ

Remark. In the definition of the Lidskii property, we need to restrict our-
selves to the nuclear operators with absolutely summable eigenvalues. This
assumption cannot be omitted as any Banach space that is not isomorphic
to a Hilbert space has nuclear operators acting on it with non-summable
eigenvalues [9, Theorem 3.11].

4.1.2 The nest approximation property

The nest approximation property is a stronger variant of the approximation
property we already discussed in the first two sections. For the formulation
of the nest approximation property, our starting point will be the second
characterization of the approximation property we used. This stated that a
Banach X has the approximation property if we can uniformly approximate
the identity operator Ix by finite rank operators on each compact subset
of X. In the second section, we saw that we can reformulate this statement
more concisely as Ix € F(X) " when we adopt the ucc-topology 7. To define
the nest approximation property, we will only need to impose some more
conditions on the operators we use to approximate the identity operator.

Definition 4.3. Let X be a Banach space and N a nest of closed subspaces
of X. We define By (X) C B(X) as the set of bounded linear operators
that leave all subspaces in A invariant. Furthermore, we define F/(X) =
F(X)N By(X) and Ny (X) = N(X) N By (X).

This allows us to define the N-approximation property and subse-
quently the nest approximation property.

Definition 4.4. Let X be a Banach space and NV a nest of closed subspaces
of X. Then X has the N-approzimation property (N-AP)if Ix € Fy(X) .
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We say that X has the nest approzimation property (NAP) if X has the
N-approximation property for any nest A.

In the next subsection, we will prove the following result, which is the
main result of this thesis.

Theorem 4.5 ([6, Theorem 3.2]). Let X be a complex Banach space that
has the approrimation property. Then the following are equivalent:

1. X has the nest approximation property.

2. For every quasi-nilpotent nuclear operator A € N(X), we have that
Tr(A) = 0.

3. X has the Lidskii property.

4.2 Proving the equivalence

In this subsection, we will prove Theorem 4.5. However, we first need some
preparatory results.

Definition 4.6. Let X be a Banach space and let V' C X be a (not
necessarily closed) linear subspace. We define the annihilator of V', denoted
by V4, as

Vi={pe X*:V Cker(p)}.

Lemma 4.7. Let X be a Banach space and let V C X be a (not necessarily
closed) linear subspace. Then V* = Vi =VL

Proof. Let {¢,nen C V* be a convergent sequence of functionals and let
¢ be its limit. It follows that [lp(x)] = [le(x) — en(@)l] < [l = eallllz]]
for all x € V. As we can make ||¢ — ¢,|| arbitrarily small, it follows that
@(z) =0, hence ¢ € V*+. So V' is closed, hence we have V1 = VL,

VL c V7 follows from the fact that V C ker(y) implies V' C ker(yp)
as the kernel of a bounded fgrictional is closed. As the other inclusion is
trivial, it follows that V+ =V . O

Lemma 4.8. Let X be a Banach space and let V' C X be a (not necessarily
closed) linear subspace. Then for all x € X, we have that x € V if and
only if x € ker(p) for all p € V*+.

Proof. The forward implication is a trivial consequence of the fact that
ker () is closed for all ¢ € V*.

For the converse implication, we argue by contradiction. Assume that
x € ker(p) for all ¢ € V+ and suppose that z ¢ V. This implies that we
can define W = Cx @V and ¢ : W — C by p(ar +v) = a for all a € C
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and v € V. From this it follows that V' C ker(p) and that ¢(z) = 1. As
V is closed, it follows by the Hahn-Banach theorem that we can extend
¢ to a bounded functional ¢ € V* such that ¢(z) = 1, contradicting our
assumption. ]

The following proposition describes the structure of the elements in
Fy(X).

Proposition 4.9 ([6, Lemma 1]). Let X be a Banach space and N a
complete nest of subspaces of X. Let x* € X* and v € X be nonzero.
Then:

1. ¥*®x € Far(X) if and only if there exists an M € N such that x € M
and x* € (M_)*.

2. If T € Fyx(X) has rank n with n > 0, then there exist xy,...,x, € X
and x3, ... x5 € X* such that T = _, s ® xy where the rank one
operators xy @ xy are in Fy(X) for all1 <k <n.

Proof. 1. Suppose that * ® € Fy(X) and define
NOZ{LGNIl'GL}.

We claim that M = (1, . ~, L works. To prove the first part, note that by
completeness of NV, it follows that M € N and by construction it follows
that x € M. Now suppose that N € N and N C M, then by construction
of M, it follows that x ¢ N hence we have that Cx N N = {0}. As
¥ ®@x € Fy(X), we have that 2*(y)x € Ca N N for all y € N. It follows
that z*(y) = 0 for all y € N, hence N C ker(z*). As this holds for all
N C M and the kernel of z* is closed, it follows that M_ C ker(z*) and
therefore we have that x* € (M_)*.

Conversely, suppose that there exists an M € N such that z € M and
x* € (M_)*. To prove that 2* ® x € F/(X), we show that each subspace
N € N is invariant under 2* ® x. Let N € N be a subspace and suppose
that M C N, then obviously for all y € N we have that z*(y)r € M C N.
On the other hand, if N C M, it follows that N C M_ and therefore we
have that 2*(y)xr = 0 € N for all y € N. In both cases, it follows that N
is an invariant subspace for z* ® x. We conclude that z* ® x € Fy(X).

2. We will proceed by induction on the rank n of T'. For n = 1, the claim
is clear. Suppose we have proven the statement for operators T' € Fj(X)
of rank n —1 > 0. Let T' € Fj/(X) be an operator of rank n. Denote the
unit sphere in the image T'X of T' by St and define

le{LENZLﬂST%Q)}.

As X € N it follows that N} # ), so we can define M = (.. L. It is clear
that {L N St}ren, is an increasing filtration of closed nonempty subsets of
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St. Furthermore, S is compact as it is a closed and bounded subset of
the finite-dimensional vector space T'X. By Lemma 3.38, it follows that
MNpen, (LN Sp) = M N Sy is nonempty. This implies that there exists a
unit vector zy € M NSy C TX. Extend {1} to a basis B = (z1,...,2,)
of TX. This implies that there exist linear functionals «7, ..., 2} such that
T =3, ; @z We claim that 27 € (M_)*. Suppose this claim is true,
then by part 1 of this proposition it follows that ] ® x; € Fy(X). So
T—2i®@x =Y 4o @ € Fyr(X) is an operator of rank n— 1, to which
we can apply our induction hypothesis to complete the proof.
To prove our claim, define

NQZ{LGNiLgM}.

Since we have that LNTX # {0} if and only if LN Sy # () for all L € N,
it follows by definition of M that L N TX = {0} for all L € N3. Since
(Upen, L) N TX = Uper, (LN TX) = {0} and TL C L for all L € A, it

follows that
T( U L) c ( U L)mTX:{o}.

LeN> LeN>

This implies that (J, .\, L C ker(T) and as zy,...z, are linearly inde-
pendent, it implies that |J, .\, L C ker(x;) for all 1 < i < n. So in
particularly (J;cn, L C ker(z}). By taking the closure it follows that

M_ = Upen, L C ker(z}), hence o7 € (M_)*. O

Remark. Proposition 4.9 quite explicitly describes the operators in Fi(X)
for complete nests N. It also shows that for any complete nest N the
space Fj(X) is nonempty as the Hahn-Banach theorem guarantees that
there exist operators of rank 1 in Fyr(X).

Using our knowledge about the structure of Fj(X) for complete nests
N, we can connect the N-AP to nuclear operators in the following theorem.

Theorem 4.10 ([6, Theorem 2.1]). Let X be a Banach space with the AP
and N a complete nest of subspaces of X. Then X has the N'-AP if and
only if for all T € N(X) such that TM C M_ for all nonzero M € N, we
have Tr(T') = 0.

Proof. Assume that X has the N-AP, so I € FN(X)T. Suppose that we
have a nuclear operator 7' € N(X) such that TM C M_ for all nonzero
M € N. Let ® be the map from Theorem 2.27 and define p = (7).
By Corollary 2.28, it follows that Tr(7") = ¢(I). So we need to show that
o(I)=0. As I € Fx(X)', it suffices to prove that ¢ vanishes on Fy(X).
Let * ® © € Fy(X) be a rank one operator. By Proposition 4.9 there
exists an M € N such that x € M and z* € (M_)*. Using the identity in
Corollary 2.28, it follows that p(z* ® x) = 2*(Tx) =0 as TM C M_. So
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¢ vanishes on all rank one operators in Fj/(X). Hence by combining this
with the second part of Proposition 4.9 and the linearity of ¢, it follows
that ¢ vanishes on Fj(X). We conclude that Tr(7") = ¢(I) = 0.

For the converse implication, assume that for all 7" € N(X) such that
TM C M_ for all nonzero M € N, we have Tr(T) = 0. We argue by
contradiction, so suppose that [ ¢ Fy(X) " By Theorem 2.20, there exists
a continuous linear functional ¢ € (B(X), 7)* such that ¢(I) = 1 and
© € Far(X)*. Let ® again be the map of Theorem 2.27. As ® is bijective,
define T' = ®~(p). Tt follows that Tr(T') = ®(T)(I) = ¢(I) = 1. Now let
* ®@x € Fy(X) be a rank one operator, then z*(Tz) = ®&(T)(z* ® x) =
o(z*®@x) =0as p € Fyr(X)*. Now fix a nonzero M € N and z € M, then
this implies that z*(Tx) = 0 for all z* € (M_)*. Hence by Lemma 4.8, it
follows that Twx € M_. As x € M and M € N nonzero were arbitrary, it
follows that TM C M_ for all nonzero M € N. By assumption, it follows
that Tr(7") = 0, contradicting our choice of T such that Tr(7) = 1. We
conclude that I € Fy(X) ', hence X has the N-AP. O

Before we proceed, we need the following lemma.

Lemma 4.11. Let X be a Banach space and N a nest of closed subspaces
of X. Suppose that a sequence {A,}nen C By (X) converges strongly to
A€ B(X), then A € By(X).

Proof. Let M € N be a closed subspace and A be defined as above. As
A, € By(X) for all n € N, it follows that A,z € M for all x € M and
n € N. It now directly follows that Az = lim,,_., A,z € M = M for all
x € M. We conclude that AM C M for all M € N, hence A € By (X). O

Corollary 4.12. Let X be a Banach space and N a nest of closed subspaces
of X. Then By (X) C B(X) is closed (with respect to the operator norm

topology).

Proof. This directly follows from Lemma 4.11 and the fact that norm con-
vergence implies strong convergence in B(X). O

As any maximal nest is complete, we can now combine Theorem 4.10
with Corollary 3.36 to obtain the following result.

Theorem 4.13 ([6, Proposition 2]). Let X be a Banach space with the AP
and N' a mazimal nest of subspaces of X. Then the following are equivalent:

1. X has the N-AP.
2. For all quasi-nilpotent T € Ny (X), we have Tr(T) = 0.

3. For all T € Ny(X) with absolutely summable eigenvalues {\;}res,
counted according to the algebraic multiplicity, we have Tr(T) =

ZkeJ Ak
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Proof. We first prove the equivalence 1 <= 2. By Theorem 4.10, it
follows that X has the N-AP if and only if for all T € N(X) such that
TM C M_ for all nonzero M € N, we have Tr(T) = 0.

Assume that for all T € N(X) such that TM C M_ for all nonzero
M € N, we have Tr(T) = 0. Let T' € Ny(X) be quasi-nilpotent. Then by
Corollary 3.36 it follows that TM C M_ for all nonzero M € N. Hence by
assumption, it follows that Tr(7") = 0.

To prove the converse implication, assume that for all quasi-nilpotent
T € Ny(X), we have Tr(7') = 0. Suppose we have a nuclear operator
T € N(X) such that TM C M_ for all nonzero M € N. We need to
prove that Tr(7T) = 0. As TM C M_ for all nonzero M € N, it follows
that T' € Ny (X) and by Corollary 3.36 it follows that 7" is quasi-nilpotent.
Hence by assumption, it follows that Tr(7") = 0.

We finish the proof by proving the equivalence 2 <= 3. The im-
plication 3 = 2 is trivial by definition of a quasi-nilpotent operator.
So it remains to prove the implication 2 = 3. So assume that for all
quasi-nilpotent T € Np/(X), we have Tr(T) = 0. Let A € Ny (X) be
a nuclear operator with absolutely summable eigenvalues. Denote these
eigenvalues by {\g}res, where each eigenvalue is counted according to the
algebraic multiplicity and the eigenvalue 0 is excluded. By Theorem 3.35,
these eigenvalues precisely correspond to the nonzero diagonal coefficients
ayy of A, including their multiplicity. This allows us to define a sequence of
distinct subspaces { My }res € N such that any, = A\p. As Ay # 0, it follows
that dim(My/(My)-) = 1 for all k € J. This allows us to use Riesz’ Lemma
to find a unit vector zj, € My such that ||zx —y| > 3 for all y € (Mj)_.
Since My, and Cxy & (My,)_ are isomorphic as Banach spaces, we can define
xp : My — C by z}(ax, +y) = o for all @« € C and y € (My)_. It follows
that for all y € (My)_ and nonzero a € C , we have that

|zi(azi + )| = la| < 2lalflz + o~ y|| = 2llazy + y].

This inequality also extends to the case that @ = 0, hence by the Hahn-
Banach theorem we can extend xj to a bounded linear functional on X
with norm at most 2. Furthermore, it follows that z}(z;) = 1 for all k € J.

Define B = Zkej M), ® x. Then B is a nuclear operator on X since

> alllailllanll <27 (Al < oo.

keJ keJ

By construction it follows that (My)_- C ker(z}). So by Proposition 4.9,
we have that A\yx} ® 2 € Fur(X) C By(X) for all k € J. Therefore, it
follows by Corollary 4.12 that B € By(X). As both A and B are nuclear
operators in By(X), it follows that A— B € Ny/(X). We claim that A— B
is quasi-nilpotent. If the claim is true, then it follows by assumption that
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0="Tr(A - B)=Tr(A) = > ,c; M- So we are finished once we prove the
claim.

We prove that A— B is quasi-nilpotent by showing that (A—B)M C M_
for all M € N. Let M € N be arbitrary. If dim(M/M_) = 0, there is
nothing to prove as (A — B)M C M = M_ since A— B € By(X). So now
suppose that dim(M/M_) = 1. We distinguish two cases: ay = 0 and
(634 7é 0.

If ap, = 0, it follows that AM C M_. Furthermore, it follows that
M ¢ {My}res. This defines two sets of indices

Ji = {/{5 My, C M_} and Jy = {/{7 M C (Mk)_},

that form a partition of J. For arbitrary x € M, it then follows that

Bz = Z Ay (2)xy = Z ey (z)xy + Z Ay ()T,

keJ keJy ke Jo
=) Mrp(x)ze +0 € M_.
keJy

So AM C M_ and BM C M_ implying that (A — B)M C M_.
If apy # 0, then there exists a K € J such that M = M. Again define

Ji={k: M, CcM_} and Jy={k:M C (M;)_},

that form a partition of J\ { K'}. For arbitrary x € M, it then follows that

(A— B)x = Az — Z Ay (x) T

keJ
= Ax — Agay(z)rg — Z Ay (x)zy, — Z Ay (@),
keJi ke
= Ax — A\gxj(x)xg — Z Ay (X)),
keJy

We need to show that this is an element of M_. As the third term clearly
is an element of M_, it suffices to show that Az — A\gx} (x)rx € M_. As
xg € M\ M_, it follows that M = Cxx @ M_ as vector spaces. So there
exists a unique scalar a € C and vector y € M_ such that x = axg + y.
Furthermore, from Corollary 3.23, it follows that there exists a z € M_
such that Ax = A\gx + z. Combining these expressions yields

Ar — Agay(v)eg = Agx + 2 — Agay ()T
= Ax(azg +y) + 2 — Agri(axg + y)rg
= Ag(azk +y)+ 2z — Agaxk
= gy+z€ M_,

hence A — B is indeed quasi-nilpotent. O
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Having proven Theorem 4.13, most of the work towards proving Theo-
rem 4.5 is done. We only need a few more results before we can finish the
proof.

Lemma 4.14. Let X be a Banach space and let N and M be nests of
closed subspaces of X such that N C M. If X has the M-AP, then it also
has the N'-AP.

Proof. Suppose that X has the M-AP. As N' C M, it is obvious that
Fm(X) C Fa(X). Since X has the M-AP, it follows immediately that
I € Fy(X)" € Fy(X)'. We conclude that X also has the N-AP. O

Corollary 4.15. Let X be a Banach space. Then X has the NAP if and
only if X has the N'-AP for all maximal nests N .

Proof. By definition of the NAP, the forward implication is trivial. To
prove the converse implication, assume that X has the N-AP for all max-
imal nests NV. Suppose that M is a nest of closed subspaces of X. By
Proposition 3.16, there exists a maximal nest M,,,,, such that M C M, 4.
By assumption, X has the M,,,,.-AP hence by Lemma 4.14 it follows that
X has the M-AP. So X has the M-AP for any nest M, hence X has the
NAP. O

Proof of Theorem 4.5. To prove the general statement, we will combine
Theorem 3.21 with Theorem 4.13 and Corollary 4.15. We will prove the
implications 1 = 3 and 2 = 1. The equivalences then follow as the
implication 3 = 2 is obvious.

To prove the implication 1 = 3, assume that X has the NAP. In
particular, X has the N-AP for all maximal nests N'. Let A € N(X)
be a nuclear operator with summable eigenvalues {\;}recs. By Theorem
3.21, there exists a maximal nest A/ of invariant subspaces of A such that
A € Ny (X). As X has the N-AP, it follows by Theorem 4.13 that Tr(A) =
> kes M- As this holds for arbitrary nuclear operators with summable
eigenvalues {\g }res, it follows that X has the Lidskii property.

To prove the implication 2 = 1, assume that for every quasi-nilpotent
nuclear operator A € N(X), we have that Tr(A) = 0. Let N/ be a maxi-
mal nest of subspaces of X. It follows that for all quasi-nilpotent nuclear
operators A € Nu(X), we have Tr(A) = 0. By Theorem 4.13, it then
follows that X has the N-AP. As N was an arbitrary maximal nest of
subspaces of X, it follows that X has the N-AP for all maximal nests N.
By Corollary 4.15, it follows that X has the NAP. O]
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