
Radboud University Nijmegen

Faculty of Science

The equivalence of the Lidskii
property and the nest
approximation property

Thesis BSc Mathematics

Author:
Thijs de Kok

Supervisor:
Dr. M.H.A.H. Müger
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Introduction

In linear algebra, the trace of a matrix A acting on an n-dimensional vector
space V can be related to its n eigenvalues {λk}nk=1 by the equation

Tr(A) =
n∑

k=1

λk,

which we will call the trace equation. For matrices A acting on a complex
vector space V , the trace equation is a direct consequence of the existence
of the Jordan normal form, combined with the fact that Tr(BC) = Tr(CB)
for any matrices B and C acting on V . In the case that V is a real vector
space, the same equality holds if we allow the eigenvalues to be complex,
which can be proven by letting A act on the complexification of V . A
different approach towards proving the trace equation is by analyzing the
coefficients of the characteristic polynomial of A. Furthermore, the identity
Tr(BC) = Tr(CB) also implies that the traces are equal whenever we have
two different matrix representations A1 and A2 of a linear operator A. This
shows that the trace of a linear operator is a characteristic of the operator
and not of the chosen matrix representation. It would certainly be nice to
extend the definition of the trace beyond operators on finite-dimensional
vector spaces in such a way that the trace equation is satisfied. This,
however, unavoidably leads to different issues we need to resolve.

To make sense of our trace equation for some linear operator A on a
vector space V , we clearly must ensure that at least the following three
conditions are satisfied:

1. There exists a well-defined (i.e. independent of any chosen represen-
tation) notion of a trace.

2. There exists a suitable multiplicity, at least for the nonzero eigenval-
ues.

3. The nonzero eigenvalues of A, counted according to the multiplicity
from 2, are absolutely summable.

Ignoring the question about how to properly define a generalized trace for
now, we see that conditions 2 and 3 together already give some problems.
For our new trace equation to be consistent with the finite-dimensional
case, we want the definition of the multiplicity mλ of a nonzero eigenvalue
λ to be the same for any vector space V . This would lead us to define
mλ = dim(Gλ), where Gλ is the generalized eigenspace of λ.

For any infinite-dimensional vector space V , this already implies that
the identity operator IV fails to satisfy the third condition as dim(G1) =
dim(V ) = ∞. Furthermore, there exists an operator A on the sequence
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space l1(N,R) such that A2 = 0 and Tr(A) = 1 when written as an infinite
matrix [13, Theorem 2.d.3]. This implies that there exists no such thing as
an exotic multiplicity that will make the trace equation valid in all Banach
spaces, let alone all vector spaces. This shows that we cannot hope to find
a generalization of the trace to infinite dimensional vector spaces, such that
the trace equation is satisfied for all linear operators on V . However, not
all hope is lost as we may try to restrict ourselves to specific subsets of
linear operators such that all three conditions are fullfilled.

For complex Hilbert spaces, this strategy is particularly fruitful and
leads to a result known as Lidskii’s theorem, in honour of Lidskii who
published his proof in 1959 [12] (even though some sources, like Pisier [18],
claim that Grothendieck discovered this earlier [7]). For a separable Hilbert
space H with orthonormal basis E, we define the trace Tr(A) of an operator
A by

Tr(A) =
∑
e∈E

⟨Ae, e⟩.

As before, applying to A = I shows that it is too much to ask for this trace
to be defined on any bounded linear operator A ∈ B(H). However, we can
define the space of trace-class operators L1(H) as

L1(H) = {A ∈ B(H) : Tr(|A|) <∞},

where |A| =
√
A∗A is defined using the standard square root for positive

operators [19, Theorem VI.9]. For any trace-class operator, the trace is
convergent and is independent of the choice of E [19, Theorem VI.24].
This implies that Tr is a well-defined functional on L1(H), hence trace-class
operators satisfy our first condition. It can be proven that any trace-class
operator is compact [19, Theorem VI.21], which implies that the algebraic
multiplicity is finite for all nonzero eigenvalues (see Section 4.1), hence the
second condition is also satisfied. Finally, by combining Theorem VI.21
from [19] and Theorem 1.15 from [22], it also follows that the third condition
is satisfied. With all three conditions satisfied, at least both sides of the
trace equation are well-defined for all operators A ∈ L1(H). Proving that
equality holds is not trivial, one proof can be found in Simon [22, Section
3] and uses the fact that for operators of the form I + zA, with I the
identity operator, z a complex scalar andA a trace-class operator, a suitable
determinant function det can be defined such that z 7→ det(I + zA) is
an entire function. The trace equality is then proven by analyzing the
coefficients in the analytic expansion of det(I+zA). This strategy is based
on the proof of the trace equation for matrices using the characteristic
polynomial.

Lidskii’s theorem is a beautiful generalization of the trace equation.
However, it only applies to complex Hilbert spaces, which are particularly
well-behaved. In general vector spaces, the analysis breaks down at several
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points, most notably due to the absence of an orthonormal basis, meaning
a different trace construction is needed.

In this thesis, we will look at some of the things we can say about the
generalization of the trace equation in Banach spaces. A very recent paper
by Figiel and Johnson [6], only published in 2016, plays a central role in
this discussion. This paper proves that two different properties of Banach
spaces, namely the Lidskii property and the nest approximation property,
are equivalent in complex Banach spaces satisfying the approximation prop-
erty. A Banach space with the Lidskii property can for now be thought of
as a Banach space that allows for a specific generalization of the trace equa-
tion. Furthermore, the nest approximation property is a stronger variant of
the well-known approximation property. Whereas the approximation prop-
erty is about approximating the identity operator by finite-rank operators,
the nest approximation property also requires these finite-rank operators
to leave an arbitrary nest of closed subspaces invariant. Section 3 provides
a precise definition of invariant nests and in Section 4 we will properly
introduce both properties and give a precise definition of them.

This approach towards generalizing the trace equation is motivated by
an article by Erdos [5], in which he gives a proof of Lidskii’s theorem
different from the one described above. In his proof, Erdos uses results
from a paper by Ringrose [20] to decompose compact operators into a
normal and a quasi-nilpotent part. He then shows that the trace equation
is satisfied for trace-class operators. This is done in two steps. First,
Erdos proves that quasi-nilpotent trace-class operators have trace equal to
0. This is done by considering an approximation of the identity operator
by finite-rank operators that leave a specific nest of subspaces invariant,
which very much resembles the nest approximation property we discuss!
Then the proof is concluded by computing the trace of the normal part
of the decomposition, which is a trivial computation using the spectral
theorem. This approach towards proving Lidskii’s theorem is based on
Ringrose’s construction of invariant nests and the analysis of how compact
operators act on them. In Section 3, we will go through this construction
in detail and we will see that the result we obtain looks very much like an
upper triangular matrix. Hence Erdos’ proof is more or less a generalization
of the proof for matrices using the Jordan normal form.

The goal of this thesis is to prove the equivalence between the Lidskii
property and the nest approximation property, where we follow the proofs
of Figiel and Johnson [6]. In the first half of this thesis, we will classify
a suitable class of operators on which we can define a trace, the nuclear
operators, and prove that this trace is well-defined if and only if the space
they are acting on satisfies the approximation property. Therefore, we will
first study the approximation property in Section 1, as it will play a promi-
nent role in the rest of this thesis. We will encounter two characterizations
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of the approximation property and we will prove that these are equivalent.
In Section 2, we will construct a trace on the nuclear operators and prove
that this trace is well-defined. To do this we will need to introduce the
topology of uniform convergence on compact sets (ucc-topology). It will
turn out that this topology is intimately connected to one of the charac-
terizations of the approximation property from Section 1. Furthermore, we
will characterize all linear functionals that are continuous with respect to
the ucc-topology and find that they have striking similarities with the nu-
clear operators. Exploiting these similarities will allow us to prove that the
trace we want to define on the nuclear operators is well-defined whenever
the Banach space they are acting on satisfies the approximation property.
The second half of this thesis is also divided into two sections. In Sec-
tion 3 we will introduce nests of subspaces, which we will use to generalize
the concept of diagonal coefficients from matrices to compact operators.
We will study the main part of the construction in Ringrose’s paper [20],
which we have already mentioned, to prove a theorem that relates the di-
agonal coefficients of a compact operator to its eigenvalues. We will see
that this creates a sort of analogy to upper triangular matrix representa-
tions of linear operators on finite-dimensional spaces. Finally, in Section 4,
all the extensive theoretical preparations of the first three sections will be
put to use in proving the equivalence of the Lidskii property and the nest
approximation property.

In this thesis, we focus on the equivalence between the two properties.
It is of course also interesting to discuss examples of Banach spaces, other
than Hilbert spaces, that satisfy both of these properties, but this is beyond
the scope of this thesis. There exists an article, published by Johnson and
Szankowski in 2014 [10], in which they introduce a class of Banach spaces
called Γ-spaces and prove that these satisfy the Lidskii property, but this
is certainly not trivial.

5



1 Multiple characterizations of the approx-

imation property

In the first section, we will look at the approximation property for Banach
spaces and discuss multiple characterizations of it. In this section, unless
stated otherwise, X and Y will be complex Banach spaces with norms
∥ · ∥X and ∥ · ∥Y respectively. However, the subscripts may occasionally
be dropped to improve readability. The space of linear operators from Y
to X will be denoted by L(Y,X). For a linear operator T ∈ L(Y,X),
we define the operator norm ∥T∥ = supy∈Y, ∥y∥≤1 ∥Ty∥ and the space of
bounded operators B(Y,X) = {T ∈ L(Y,X) : ∥T∥ < ∞}. A standard
result from functional analysis is that the operator norm really is a norm
on B(Y,X) and that (B(Y,X), ∥ · ∥) is complete if (X, ∥ · ∥X) is. The
only topologies considered in this section are the topologies generated by
the open balls of the Banach norms and the operator norm. Closures in
these topologies will be denoted by A for any subset A of these spaces.
With these topologies on the Banach spaces, B(Y,X) is precisely the space
of continuous linear operators from Y to X. Furthermore, we denote the
space of compact operators from Y to X as K(Y,X) and the space of
finite-rank operators from Y to X as F (Y,X). For any of these operator
spaces, we omit the Y in the notation if Y = X. Since any compact
operator is bounded, any finite-rank operator is compact and the space of
compact operators is closed in the space of bounded operators, we have
the following inclusions, ordering the above-mentioned operator spaces:
F (Y,X) ⊂ F (Y,X) ⊂ K(Y,X) ⊂ B(Y,X) ⊂ L(Y,X). Where we use
the symbol ⊂ for nonstrict inclusion.

1.1 The approximation property

In existing literature, there are multiple ways in which the approximation
property is defined. The one we will use is in line with Megginson [15,
p. 330]. However, for example Lindenstrauss and Tzafriri [13, p. 30] and
Grothendieck [8, p. 165] use a different definition. The main goal of this
section will be to prove Theorem 1.2, which states that these definitions are
equivalent. This was first proven by Grothendieck [8] in 1955. In Section
2, we will encounter other characterizations, for which we need some more
theory to formulate them.

Definition 1.1. A Banach space X has the approximation property (AP),
if for every Banach space Y, the following holds: F (Y,X) = K(Y,X).

Theorem 1.2. Let X be a Banach space. Then the following are equiva-
lent:
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1. X has the approximation property.

2. For every compact K ⊂ X and every ϵ > 0, there exists some TK,ϵ ∈
F (X) such that ∥TK,ϵx− x∥ < ϵ for all x ∈ K.

Both Megginson [15, Theorem 3.4.32] and Lindenstrauss [13, Theorem
1.e.4] also give proofs of this, however Lindenstrauss’s proof only applies to
real Banach spaces. Megginson made some modifications to this proof to
also include complex Banach spaces. Therefore, we will follow Megginson’s
proof in this section. We can prove the implication 2 =⇒ 1 immediately.
For the converse implication, we need to do more work. It will be proven
at the end of Section 1.

Proof of Theorem 1.2, 2 =⇒ 1. Suppose 2 holds, so for every compact
K ⊂ X and every ϵ > 0, there exists some TK,ϵ ∈ F (X) such that
∥TK,ϵx − x∥ < ϵ for all x ∈ K. We need to show that for any Banach
space Y , we have that F (Y,X) is dense in K(Y,X). Let Y be an arbitrary
Banach space and let A ∈ K(Y,X) be an arbitrary compact operator.
Furthermore, let BY be the closed unit ball of Y . Compactness of A im-
plies that K = ABY is compact in X. By assumption, there exists a
sequence {Tn}n∈N ⊂ F (X) such that ∥Tnx − x∥ < 1

n
for all x ∈ K and

n ∈ N. Now consider the sequence {An}n∈N defined by An = TnA. We see:
∥An − A∥ = supy∈Y, ∥y∥≤1 ∥Any − Ay∥ = supy∈Y, ∥y∥≤1 ∥TnAy − Ay∥ ≤ 1

n

as Ay ∈ K for all y ∈ Y such that ∥y∥ ≤ 1. So as An → A as n → ∞
in the operator norm and An ∈ F (Y,X) for all n ∈ N, it follows that
A ∈ F (Y,X), hence K(Y,X) ⊂ F (Y,X). As the converse inclusion always
holds, we have equality and thus X has the AP by definition.

1.2 Convex, balanced and absorbing sets

From now on, we assume F ∈ {R,C}. If V is a topological vector space over
F and A ⊂ V , x ∈ V and α ∈ F then we define: x + A = {x + y : y ∈ A}
and αA = {αy : y ∈ A}. Furthermore, if V is a normed space, we denote
the closed ball of radius r centered at x by Br(x).

Definition 1.3. Let V be a topological vector space and let A ⊂ V , then:

1. A is convex if for all x, y ∈ A and t ∈ [0, 1] we have that tx+(1−t)y ∈
A.

2. A is balanced if for every α ∈ F such that |α| ≤ 1, we have αA ⊂ A.

3. A is absorbing if for every x ∈ V , there exists some sx ≥ 0 such that
for all t > sx we have x ∈ tA.

4. The convex hull of A, denoted by co(A), is the smallest convex set
containing A, so the intersection of all convex sets containing A.
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5. The closed convex hull of A, denoted by co(A) is the intersection of
all closed convex sets containing A.

Some immediate consequences of these definitions are summarized in
the next propositions.

Proposition 1.4 ([15, p. 3]). In a topological vector space:

1. Arbitrary intersections of convex sets are convex (so the definition of
the (closed) convex hull indeed gives a convex set).

2. Arbitrary unions and intersections of balanced sets are balanced.

3. Scalar multiples of convex sets are convex and scalar multiples of
balanced sets are balanced.

4. The closed convex hull of any set is closed.

Proposition 1.5. Let V be a normed space, then:

1. If C ⊂ V is convex, so is C.

2. If B ⊂ V is balanced, so is B.

Proof. 1. Let x, y ∈ C and t ∈ [0, 1]. As x, y ∈ C, there are sequences
{xn}n∈N and {yn}n∈N in C converging to x and y respectively. Since C is
convex, we have txn + (1 − t)yn ∈ C for all n ∈ N. By letting n → ∞ we
see tx+ (1− t)y ∈ C. So C is convex.

2. Let α ∈ F such that |α| ≤ 1 and x ∈ B. As x ∈ B, there is a sequence
{xn}n∈N in B converging to x. Since B is balanced, we have αxn ∈ B for
all n ∈ N. By letting n → ∞ we see αx ∈ B, hence αB ⊂ B. So B is
balanced.

Proposition 1.6. Let V be a normed space and A ⊂ V , then:

1. co(A) = co(A)

2. co(A) = co(A)

Proof. 1. Since A ⊂ A ⊂ co(A) and co(A) is closed and convex, we have
co(A) ⊂ co(A) by definition of the closed convex hull. Conversely, since
A ⊂ co(A) and co(A) is closed, we have A ⊂ co(A). Now, since co(A) is
closed and convex, by definition, we have co(A) ⊂ co(A). So combining
both inclusions gives co(A) = co(A).

2. We have A ⊂ co(A) ⊂ co(A) and by Proposition 1.5 co(A) is closed
and convex. So by definition co(A) ⊂ co(A). Conversely, since A ⊂ co(A)
and co(A) is convex, by definition we have co(A) ⊂ co(A) and as the latter
is closed, this yields co(A) ⊂ co(A). So combining both inclusions gives
co(A) = co(A).
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Proposition 1.7. Let V be a normed space and A ⊂ V and define

C :=

{
N∑

n=1

tnxn : N ∈ N, xn ∈ A, tn ≥ 0,
N∑

n=1

tn = 1

}
.

Then C = co(A).

Proof. We need to prove that C is the smallest convex set containing A. For
all x ∈ A, we have that x is a convex combination as in the definition of C.
It follows that x ∈ C, hence A ⊂ C. Furthermore, C is convex; let x, y ∈ C
and t ∈ [0, 1], since x, y ∈ C we can find N,M ∈ N, elements xn, ym ∈ A
and positive real numbers rn, sm ∈ [0, 1] for all n ∈ {1, ..., N} and m ∈
{1, ...,M} such that we can write x =

∑N
n=1 rnxn and y =

∑M
m=1 smym.

Then tx+(1−t)y =
∑N

n=1 trnxn+
∑M

m=1(t−1)smym is a linear combination
as in the definition of C, so tx+ (1− t)y ∈ C implying that C is convex.

It is left to show that C is the smallest convex set that includes A. Now
suppose C1 is a second convex set including A, we are done when we prove
that C ⊂ C1. So let

∑N
n=1 tnxn be an element of C, we want to prove that∑N

n=1 tnxn ∈ C1. We proceed by induction on N . Note that for N = 1
the claim is trivial, as C1 contains A. Now let N > 1 and suppose that all
linear combinations in C of the form

∑N−1
n=1 tnxn are in C1. Let

∑N
n=1 tnxn

be an element of C and without loss of generality, we can assume that
tn ̸= 0 for all n ∈ {1, ..., N}. Define T =

∑N−1
n=1 tn = 1 − tN ̸= 0, then by

the induction hypothesis, we have T−1
∑N−1

n=1 tnxn ∈ C1 and as C1 includes

A, we also have xN ∈ C1. So by convexity of C1, we have that
∑N

n=1 tnxn =

TT−1
∑N−1

n=1 tnxn+tNxN = (1−tN)T−1
∑N−1

n=1 tnxn+tNxN ∈ C1, completing
the induction.

Proposition 1.8. Let V be a normed space over F and A ⊂ V a balanced
set, then:

1. If α ∈ F and |α| = 1, then αA = A.

2. co(A) is balanced.

Proof. 1. Let A ⊂ V be balanced and suppose |α| = 1. By definition of a
balanced set, we have αA ⊂ A. As α ∈ F and |α| = 1 we have α−1 ∈ F
and |α−1| = 1, so by definition of a balanced set, we also have α−1A ⊂ A,
hence A ⊂ αA. Combining both inclusions gives αA = A.

2. Let x ∈ co(A) and α ∈ F with |α| ≤ 1. Since x ∈ co(A), we can
find a linear combination as in Proposition 1.7 such that x =

∑N
n=1 tnxn.

Since A is balanced, we have αxn ∈ A for all n ∈ {1, ..., N}. So αx =∑N
n=1 tnαxn is a linear combination as in Proposition 1.7, so αx ∈ co(A).

Hence αco(A) ⊂ co(A), so co(A) is balanced.
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Combining Propositions 1.5, 1.6 and 1.8, we can formulate the following
corollary.

Corollary 1.9. Let V be a normed space and A ⊂ V a balanced subset.
Then the following sets are also balanced: A, co(A) and co(A) = co(A) =
co(A).

In the proof of the second implication of Theorem 1.2, compact convex
hulls will turn out to be very useful. Therefore, we wish to relate the
compactness properties of a set A to the compactness properties of its
convex hull, for this we will use Mazur’s compactness theorem.

Theorem 1.10 (Mazur’s compactness theorem). Let X be a Banach space
and suppose K ⊂ X is compact, then co(K) is compact.

A proof of Mazur’s compactness theorem can be found in [15]. However,
as it relies on lemmas that prove compactness properties of the (closed)
convex hull more generally in both the norm and weak topology, it is un-
necessarily complicated for our purposes. However, Conway [2, Theorem
4.8] presents a much simpler proof that works for the norm topology. We
can reformulate the contents of Mazur’s compactness theorem in terms of
precompact sets.

Theorem 1.11. Let X be a Banach space and suppose A ⊂ X is precom-
pact, then co(A) is precompact.

Proof. If A is precompact, then by Mazur’s compactness theorem, co(A) is
compact. So by Proposition 1.6, co(A) = co(A) is compact, hence co(A) is
precompact.

We saw that given any subset A of normed space V , we can extend
this subset to a convex set by looking at the convex hull of A. Moreover,
if V is complete and A is precompact, then Mazur’s compactness theorem
ensures that this convex hull is precompact too. In a similar fashion, we
would like to extend a subset to a balanced subset of V while preserving
precompactness.

Proposition 1.12. Let V be a normed space over F and A ⊂ V , then the
set

B :=
⋃

{αA : α ∈ F, |α| ≤ 1}

is balanced. Furthermore, if A is precompact, so is B.

Proof. To prove B is balanced, we need to show βB ⊂ B for all β ∈ F
such that |β| ≤ 1. Let β ∈ F be arbitrary such that |β| ≤ 1 and let
y ∈ B. Then by definition of B, there exist γ ∈ F such that |γ| ≤ 1
and x ∈ A such that y = γx. So βy = βγx ∈ B as |βγ| = |β||γ| ≤ 1.
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So B is balanced. Now suppose A is precompact. We prove that B is
precompact by showing all sequences in B have a convergent subsequence.
Let {yn}n∈N ⊂ B. Then for all n ∈ N there exist αn ∈ F and xn ∈ A such
that |α| ≤ 1 and yn = αnxn. Since A is precompact and {α ∈ F : |α| ≤ 1}
is compact, there exists a subsequence {ynk

}k∈N such that both {αnk
}k∈N

and {xnk
}k∈N are convergent, so {ynk

}k∈N is convergent as product of two
convergent sequences. It follows that B is precompact.

Before we move on to finish the proof of Theorem 1.2, we need a few
more technical results, relating precompact sets to the closed convex hull
of sequences converging to 0. These come straight from Megginson [15].
However, the proofs given here are more detailed.

Proposition 1.13 ([15, Lemma 3.4.29]). Let X be a Banach space, {xn}n∈N
a sequence converging to 0 and let H ⊂ F be either {1} or the closed ball
with radius ρ, centered at 0. Then

co({αxn : α ∈ H,n ∈ N}) =

{∑
n∈N

tnαnxn : tn ≥ 0, αn ∈ H,
∑
n∈N

tn ≤ 1

}
,

and this closed convex hull is compact.

Proof. Define C =
{∑

n∈N tnαnxn : tn ≥ 0, αn ∈ H,
∑

n∈N tn ≤ 1
}
andR =

max{1, ρ}. C is well-defined as {xn}n∈N and {αn}n∈N are bounded and
{tn}n∈N is absolutely summable. For all α ∈ H and n ∈ N, we have that
αxn is a sum as in the definition of C, therefore {αxn : α ∈ H,n ∈ N} ⊂ C.
We first prove that C is closed and convex.

For convexity, let x, y ∈ C and t ∈ [0, 1]. Then we can write x =∑
n∈N rnβnxn and y =

∑
n∈N snγnxn, where these are sums as in the defi-

nition of C. Then tx+ (1− t)y =
∑

n∈N(trnβn + (1− t)snγn)xn. To prove
convexity, we need to prove that this is a sum as in the definition of C. If
t = 0, t = 1 or H = {1}, this is clear. So suppose t ∈ (0, 1) and H is a
closed ball of radius ρ, centered at 0. Proving this is a sum as in the defi-
nition of C means that for all n ∈ N we must find un ≥ 0 and δn ∈ H such
that

∑
n∈N un ≤ 1 and trnβn+(1− t)snγn = unδn. If trn+(1− t)sn = 0, it

follows that rn = sn = 0 since t and 1− t are strictly positive. Put un = 0
and δn = 0 ∈ H, then trnβn+(1− t)snγn = 0 = unδn. If trn+(1− t)sn ̸= 0,

put un = trn + (1− t)sn and δn = trnβn+(1−t)snγn
un

. Since

|δn| =
∣∣∣∣trnβn + (1− t)snγn

un

∣∣∣∣ ≤ trn|βn|+ (1− t)sn|γn|
un

≤ trnρ+ (1− t)snρ

un
=
unρ

un
= ρ,
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it follows that δn ∈ H. As
∑

n∈N un =
∑

n∈N trn + (1 − t)sn ≤ 1, we have
that tx+ (1− t)y =

∑
n∈N unδnxn ∈ C, so C is convex.

For closedness, let y ∈ C, so there exists a sequence {y(m)}m∈N such
that y(m) ∈ C for all m ∈ N and y(m) → y as m → ∞. As y(m) ∈
C we can write y(m) =

∑
n∈N t

(m)
n α

(m)
n xn where these are sums as in the

definition of C. For fixed n ∈ N this yields two sequences {t(m)
n }m∈N ⊂

[0, 1] and {α(m)
n }m∈N ⊂ H. As both [0, 1] and H are compact, we can

find a subsequence {y(mk)}k∈N such that {t(mk)
1 }k∈N converges to some t1 ∈

[0, 1] and {α(mk)
1 }k∈N converges to some α1 ∈ H. As the same argument

now applies to the sequences {t(mk)
2 }k∈N ⊂ [0, 1] and {α(mk)

2 }k∈N ⊂ H, we

can find a subsequence {y(mkl
)}l∈N such that {t(mkl

)

2 }l∈N converges to some

t2 ∈ [0, 1] and {α(mkl
)

2 }l∈N converges to some α2 ∈ H. By repeating this
argument inductively N times, we obtain a subsequence for which the first
N pairs of coefficients converge. Now we can make N arbitrarily large.
This yields two sequences {tn}n∈N ⊂ [0, 1] and {αn}n∈N ⊂ H, where each
tn and αn are inductively defined in the same way as t1, t2, α1 and α2. Put
y′ =

∑
n∈N tnαnxn, we will prove that y = y′ and y′ ∈ C. To prove y′ ∈ C it

is only left to prove that
∑

n∈N tn ≤ 1. For N ∈ N, consider TN =
∑N

n=1 tn.
By construction, there exists a subsequence {y(mk)}k∈N such that the first
N coefficients tmk

n converge to tn. This implies that

TN =
N∑

n=1

tn = lim
k→∞

N∑
n=1

t(mk)
n ≤ 1 ∀N ∈ N.

So by taking N → ∞, it follows that
∑

n∈N tn ≤ 1 , hence y′ ∈ C. We
prove that y = y′ by showing that ∥y − y′∥ = 0. For this, pick ϵ > 0 and
M ∈ N such that supn>M ∥xn∥ < ϵ

4R
. By the same argument as before, we

can find a subsequence {y(mk)}k∈N such that the firstM pairs of coefficients
converge to tn and αn for all n ≤M . Then we have

∥y′ − y(mk)∥ ≤
∑
n∈N

∥xn∥|tnαn − t(mk)
n α(mk)

n |

=
M∑
n=1

∥xn∥|tnαn − t(mk)
n α(mk)

n |+
∞∑

n=M+1

∥xn∥|tnαn − t(mk)
n α(mk)

n |

<

M∑
n=1

∥xn∥|tnαn − t(mk)
n α(mk)

n |+
∞∑

n=M+1

ϵ

4R
R(tn + t(mk)

n )

≤
M∑
n=1

∥xn∥|tnαn − t(mk)
n α(mk)

n |+ ϵ

2
.

As the firstM pairs of coefficients converge, there exists aK1 ∈ N such that
for all k ≥ K1 the first term of the right-hand side of the last inequality is

12



less than ϵ
2
. So for all k ≥ K1, it follows that ∥y′−y(mk)∥ < ϵ. As {y(mk)}k∈N

is a subsequence of {y(m)}m∈N, it also converges to y. This implies there
exists aK2 ∈ N such that for all k ≥ K2 we have that ∥y−y(mk)∥ < ϵ. So for
K = max (K1, K2), it follows that ∥y′−y∥ ≤ ∥y′−y(mK)∥+∥y−y(mK)∥ < 2ϵ.
As this applies to all ϵ > 0, we have y = y′ ∈ C and therefore we conclude
that C is closed.

So C is a closed and convex set containing {αxn : α ∈ H,n ∈ N},
to prove C = co({αxn : α ∈ H,n ∈ N}) we need to prove that it is
the smallest of such sets. So let C1 be a closed and convex set such that
{αxn : α ∈ H,n ∈ N} ⊂ C1. We need to prove that C ⊂ C1. Note
that since C1 is closed, we have 0 ∈ C1. So let y =

∑
n∈N tnαnxn ∈ C

and define yN =
∑N

n=1 tnαnxn. With T =
∑N

n=1 tn, we see that yN =

(1− T )0 +
∑N

n=1 tnαnxn ∈ C1 as this is a convex combination of elements
in C1. So since yN → y as N → ∞ and C1 is closed, this implies y ∈ C1.
Hence we have that C ⊂ C1, proving that C is the desired closed convex
hull.

It is left to prove that C is compact. As {xn}n∈N converges to 0, the
set {xn : n ∈ N} ∪ {0} is compact as any cover of open sets contains a
finite subcover. Hence {xn : n ∈ N} is precompact. By Proposition 1.12, it
follows that {αxn : α ∈ H,n ∈ N} =

⋃
α∈H α{xn : n ∈ N} is precompact,

too. So by combining Mazur’s compactness theorem and Proposition 1.6, it

follows that C = co({αxn : α ∈ H,n ∈ N}) = co
(
{αxn : α ∈ H,n ∈ N}

)
is compact.

Proposition 1.14 ([15, Lemma 3.4.30]). Let X be a Banach space and
A ⊂ X precompact. Then there exists a sequence {xn}n∈N ⊂ X converging
to 0 such that A ⊂ co({xn : n ∈ N}).

Proof. If A = ∅, there is nothing to prove, so assume A ̸= ∅ and A is
precompact. Since non-zero scalar multiplication is a homeomorphism,
2A is also precompact, hence totally bounded. This implies that we can
find {x1, ..., xn1} ⊂ 2A such that 2A ⊂

⋃n1

j=1B 1
2
(xj). Now define A1 =⋃n1

j=1

(
(2A ∩B 1

2
(xj))− xj

)
. Since for all j ≤ n1, we have that 2A ∩

B 1
2
(xj) ⊂ 2A, it follows that 2A ∩ B 1

2
(xj) is precompact too. Since trans-

lation is a homeomorphism, we have that (2A∩B 1
2
(xj))−xj is precompact

for all j ≤ n1 and thus A1 is precompact as finite union of precompact
sets. Furthermore we see that A1 ⊂ B 1

2
(0) and as A ̸= ∅ we also have

A1 ̸= ∅. So we can repeat this procedure with A1, therefore there are
{xn1+1, ..., xn2} ⊂ 2A1 such that 2A1 ⊂

⋃n2

j=n1+1B 1
22
(xj) and we define

A2 =
⋃n2

j=n1+1

(
(2A1 ∩B 1

22
(xj))− xj

)
. Now A2 is precompact, non-empty

and A2 ⊂ B 1
22
(0). We can continue this construction. Notice that by every
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iteration, the radius of closed balls decreases by a factor of 1
2
. This yields the

sequence {xn}n∈N, which converges to 0 as Ak ⊂ B 1

2k
(0) for all k ∈ N. We

prove that A ⊂ co({xn : n ∈ N}) =
{∑

n∈N tnxn : tn ≥ 0,
∑

n∈N tn ≤ 1
}
,

where the equality follows from Proposition 1.13. Suppose that x ∈ A, by
construction there exists a j1 with 1 ≤ j1 ≤ n1 such that 2x− xj1 ∈ A1, so
we can find an integer j2 with n1+1 ≤ j2 ≤ n2 such that 4x− 2xj1 −xj2 =
2(2x − xj1) − xj2 ∈ A2, and so forth. After m iterations and dividing by
2m, we have that

x−
m∑

n=1

2−nxjn ∈ 2−mAm ⊂ B 1
4m

(0).

After taking the limit as m → ∞, it follows that x =
∑∞

n=1 2
−nxjn ∈

co({xn : n ∈ N}), which finishes the proof.

Proposition 1.15 ([15, Lemma 3.4.31a]). Let X be a Banach space. Then
A ⊂ X is precompact if and only if there exists a sequence {xn}n∈N ⊂ X
converging to 0 such that A ⊂ co({xn : n ∈ N}).

Proof. If A ⊂ X is precompact, then by Proposition 1.14 there exists a
sequence {xn}n∈N ⊂ X converging to 0 such that A ⊂ co({xn : n ∈ N}).
Conversely, if there is a sequence {xn}n∈N ⊂ X converging to 0 such that
A ⊂ co({xn : n ∈ N}). Then by Proposition 1.13, A is a subset of a
compact set so A is precompact.

1.3 Proving the second implication

In the previous subsection, we discussed properties of convex and balanced
sets. Furthermore, we looked at (closed) convex hulls, particularly those of
sequences converging to 0. In this section, we will use these to prove the
forward implication of Theorem 1.2. The strategy for the proof will be to
pair every compact K ⊂ X with a suitable Banach space Y which, as set,
is a subset of X. Furthermore, we want to construct Y in such a way that
K is contained in the unit ball in Y and such that the identity map from
Y into X is compact. Then we will see that the approximation property
allows us to uniformly approximate the identity map of X on compact sets
by finite-rank operators. For the rest of this section, if S is a subset of a
vector space V , we denote the linear span of S by span(S).

Definition 1.16. Let V be a vector space and A ⊂ V be an absorbing
subset. Then the Minkowski functional of A, denoted by pA, is defined as
pA(x) = inf{t : t > 0, x ∈ tA} for all x ∈ V .

Remark. We require A to be absorbing such that {t : t > 0, x ∈ tA} is non-
empty for all x ∈ V . Hence pA(x) is finite, real-valued, and nonnegative
for all x ∈ V .
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Definition 1.17. Let V be a vector space, a function f : V → R is
positive-homogeneous if for all c ∈ R such that c > 0 and all x ∈ V , we
have that f(cx) = cf(x). We call f sublinear if for all x, y ∈ V we have
that f(x+ y) ≤ f(x) + f(y).

Proposition 1.18 ([15, Proposition 1.9.14 a]). Suppose that V is a vector
space and A ⊂ V is an absorbing set. Then:

1. pA is positive-homogeneous and A ⊂ {x ∈ V : pA(x) ≤ 1}.

2. If A is convex, then pA is sublinear and {x ∈ V : pA(x) < 1} ⊂ A.

3. If A is both convex and balanced, then pA is a seminorm on V .

Using the Minkowski functional, we can construct new Banach spaces.

Proposition 1.19 ([15, Lemma 3.4.38]). Suppose X is a Banach space
over F and S ⊂ X is nonempty and precompact. Define

KS = co
(⋃

{αS : α ∈ F, |α| ≤ 1}
)
,

and let Y = span(KS). Then:

1. KS is compact in X and S ⊂ KS.

2. The vector space Y has a Banach norm ∥ · ∥Y such that KS is the
closed unit ball in (Y, ∥ · ∥Y ).

3. The inclusion/identity map from Y into X is compact.

Proof. 1. Write B =
⋃
{αS : α ∈ F, |α| ≤ 1}, then by Proposition 1.12,

B is balanced and precompact. So we see that KS = co(B) = co(B)
by Proposition 1.6 which is compact by Mazur’s compactness theorem.
Furthermore, we have that S ⊂ B ⊂ co(B) = KS.

2. As B is balanced, KS is also balanced by Corollary 1.9. Moreover,
KS is obviously convex. KS being balanced and convex also implies that
KS is absorbing in Y . Suppose that y ∈ Y , we will prove there exists sy ≥ 0
such that for all t > sy, we have that y ∈ tKS. Note that since 0 ∈ KS,
it follows that for all t > 0 we have that 0 ∈ tKS. So if y = 0, we can
take sy = 0 and we are done. Now suppose y ̸= 0. Since Y = span(KS),

we can write y =
∑N

n=1 αnyn for some N ∈ N, αn ∈ F and yn ∈ KS.
Since y ̸= 0, we can assume that N ̸= 0 and αn ̸= 0 for all n such that
1 ≤ n ≤ N . We define M = max1≤n≤N |αn| and since KS is balanced,
we have that αn

M
yn ∈ KS for all n such that 1 ≤ n ≤ N . Now since KS

is convex, it follows that y
NM

=
∑N

n=1
αn

NM
yn ∈ KS, hence y ∈ NM · KS.

Now put sy = MN and suppose that t > sy = NM . By convexity of KS

it follows that y
t
= MN

t
y

MN
+ (1 − MN

t
)0 ∈ KS, hence y ∈ tKS. So KS

15



is absorbing. Now define ∥y∥Y = pKS
(y) for all y ∈ Y , where pKS

is the
Minkowski functional of KS. By Proposition 1.18 this is a seminorm on Y .
However, if y ∈ Y and y ̸= 0 we have that ∥y∥Y > 0. Suppose not, then
by definition of the Minkowski functional, we obtain a sequence {tn}n∈N
of positive numbers converging to 0 such that t−1

n y ∈ KS for all n ∈ N.
However, this implies that KS is unbounded with respect to ∥ · ∥X , which
contradicts the compactness of KS ⊂ X. It follows that ∥ · ∥Y is a norm on
Y .

From the first part of Proposition 1.18 it follows that KS is contained
in the closed unit ball of (Y, ∥ · ∥Y ). Conversely, suppose y ∈ Y \ KS.
Since KS is closed, we can find an ϵ > 0 such that the open ball of radius
ϵ centered at y with respect to ∥ · ∥X is disjoint with KS, where we can
assume that ϵ < ∥y∥X . Now take t > 0 such that y ∈ tKS, since tKS ⊂ KS

for all t ≤ 1 it follows that t > 1. As y
t
∈ KS, we have that ∥y − y

t
∥X ≥ ϵ,

hence 1− 1
t
≥ ϵ

∥y∥X
so it follows that t ≥ ∥y∥X

∥y∥X−ϵ
> 1. By taking the infimum

over all such t, we see that ∥y∥Y > 1, so y is not contained in the closed
unit ball of (Y, ∥ · ∥Y ), completing the proof that KS is the closed unit ball
of (Y, ∥ · ∥Y ).

The only thing left to prove is that (Y, ∥ ·∥Y ) is a Banach space. In the
rest of this proof, we will write BY instead of KS if we refer to KS as subset
of Y and just KS when we mean KS as subset of X. Since KS is bounded,
there exists a K > 0 such that ∥x∥X ≤ K for all x ∈ KS. Now suppose

y ∈ Y and y ̸= 0, then y
∥y∥Y

∈ BY = KS, hence
∥y∥X
∥y∥Y

≤ K so ∥y∥X ≤ K∥y∥Y
and this identity obviously extends to the case that y = 0. Now suppose
(Y, ∥ · ∥Y ) is not Banach, so there exists a nonconvergent Cauchy sequence
in Y , say {vn}n∈N. By rescaling, we can assume this Cauchy sequence to
be in BY . By the inequality we have just proven, it follows that {vn}n∈N
is also a Cauchy sequence in X and lies in KS. So by compactness of
KS, it follows that {vn}n∈N has a limit v ∈ KS. Define wn = vn − v,
then {wn}n∈N converges to 0 in X and is a nonconvergent Cauchy sequence
in Y . So there exists a δ > 0 and a subsequence {wnj

}j∈N such that
∥wnj

∥Y ≥ δ for all j ∈ N. Consider the sequence {zj}j∈N defined by
zj = ∥wnj

∥−1
Y wnj

. As ∥zj∥X ≤ δ−1∥wnj
∥X it follows that {zj}j∈N converges

to 0 in X. Furthermore

∥zi − zj∥Y =

∥∥∥∥ wni

∥wni
∥Y

−
wnj

∥wnj
∥Y

∥∥∥∥
Y

≤
∥wni

(∥wnj
∥Y )− wnj

(∥wni
∥Y )∥Y

δ2

=
∥wni

(∥wnj
∥Y )− wni

(∥wni
∥Y ) + wni

(∥wni
∥Y )− wnj

(∥wni
∥Y )∥Y

δ2

≤
(
∥wni

∥Y |∥wnj
∥Y − ∥wni

∥Y |+ ∥wni
∥Y ∥wni

− wnj
∥Y
)

δ2

≤
2∥wni

∥Y ∥wni
− wnj

∥Y
δ2

,
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where we used the reverse triangle inequality for the last step. As {wni
}i∈N

is bounded, we conclude that {zj}j∈N is Cauchy in Y . So there exist an
integer j0 ∈ N such that for all i, j ≥ j0, we have that ∥zi − zj∥Y ≤ 1

2
. So

for all j ≥ j0, it follows that ∥2(zj0 − zj)∥Y ≤ 1 so 2(zj0 − zj) ∈ BY = KS.
So as zj → 0 in X and KS is closed in X it follows that 2zj0 ∈ KS = BY ,
so ∥zj0∥Y ≤ 1

2
which contradicts ∥zj∥Y = 1 for all j ∈ N. So (Y, ∥ · ∥Y ) is

complete.
3. The identity map from Y into X maps the closed unit ball BY in Y

to the compact set KS in X, therefore it is a compact map.

Corollary 1.20. Let X be a Banach space and let S ⊂ X be nonempty
and precompact. Let Y be the Banach space as constructed in Proposition
1.19. Then the identity map from Y into X is continuous, hence bounded.
In other words, there exists a positive constant C such that ∥y∥X ≤ C∥y∥Y
for all y ∈ Y , furthermore we can assume that C ≤ maxx∈KS

∥x∥X

Proof. Continuity of the identity map follows directly from the fact that the
identity map is compact. The bound on C is found by the same argument
as used in the proof of Proposition 1.19.

Corollary 1.21. Let X be a Banach space and let S ⊂ X be nonempty
and precompact. Let Y be the Banach space as constructed in Proposition
1.19. If the sequence {yn}n∈N converges to 0 in Y , then it also does in X.
Furthermore, if H is defined as in Proposition 1.13, then the closed convex
hull co({αyn : α ∈ H,n ∈ N}) is the same in both spaces.

Proof. By continuity of the identity map from Y into X, it follows that
{yn}n∈N also converges to 0 in X. So we can apply Proposition 1.13 both
to {yn}n∈N as a sequence in X and as a sequence in Y and see that the
closed convex hull is independent of the space.

Now that we have seen how we can construct Banach spaces from pre-
compact sets, we only need a couple more results to prove the second
implication of Theorem 1.2.

Proposition 1.22 ([15, Lemma 3.4.31b]). Suppose X is a Banach space
and A ⊂ X is precompact. Let {xn}n∈N be as in Proposition 1.15. Then
there exists a compact subset S ⊂ X such that co({xn : n ∈ N}) ⊂ S and
{xn}n∈N also converges to 0 in Y , where Y is the Banach space constructed
from S as in Proposition 1.19.

Proof. Suppose A ⊂ X is precompact and {xn}n∈N is as in Proposition
1.15. From the formula for the closed convex hull found Proposition 1.13
it follows that elements xn = 0 do not affect the shape of the closed convex
hull, therefore we may assume xn ̸= 0 for all n ∈ N. Define yn = ∥xn∥−1/2

X xn
if ∥xn∥X < 1 and yn = xn otherwise. Then {yn}n∈N converges to 0 so
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{yn}n∈N is precompact, therefore S = co({yn : n ∈ N}) is compact by
Mazur’s compactness theorem. If ∥xn∥X ≥ 1, we have that xn = yn ∈ S

and if ∥xn∥X < 1 then xn = ∥xn∥1/2X yn ∈ S as S is convex and 0 ∈ S.
So as {xn : n ∈ N} ⊂ S and since S is closed and convex, it follows
that co({xn : n ∈ N}) ⊂ S. Now let (Y, ∥ · ∥Y ) be as in Proposition
1.19 and denote the closed unit ball in Y as BY . If ∥xn∥X < 1 then

∥xn∥−1/2
X xn = yn ∈ S ⊂ BY , hence ∥xn∥Y ≤ ∥xn∥1/2X and therefore {xn}n∈N

also converges to 0 in Y .

The last step before we can prove the forward implication of Theorem
1.2 is to show that if Y is a Banach space as constructed in Proposition
1.19, we can approximate the bounded functionals of Y sufficiently well by
bounded functionals of X. For this, we will need the so-called separating
hyperplane theorem. From now on, if X is a normed space, we denote the
dual space of X by X∗.

Theorem 1.23 (separating hyperplane theorem, [19, Theorem V.4]). Let
X be a Banach space over F. Let A and B be disjoint convex sets in X. If
A is compact and B is closed, there exists a linear functional φ ∈ X∗ and
a real number b, such that ℜ(φ(x)) < b for all x ∈ A and ℜ(φ(x)) > b for
all x ∈ B.

Lemma 1.24. Let X be a Banach space and K ⊂ X compact. Let δ > 0
and let {xn}n∈N and S be as in Proposition 1.22. Let Y be the Banach space
constructed from this S as in Proposition 1.19. Then for every bounded
functional y∗ ∈ Y ∗ there exists a bounded functional x∗ ∈ X∗ such that
|y∗x− x∗x| < δ for all x ∈ K.

Proof. Let y∗ ∈ Y ∗ be a bounded functional. By Proposition 1.22 it follows
that {xn}n∈N also converges to 0 in Y . As y∗ is continuous, we have that
{y∗xn}n∈N converges to 0. This implies there exists an n0 ∈ N such that
|y∗xn| < δ

2
for all n > n0. Let

Kn0 := 2δ−1co({αxn : α ∈ F, |α| ≤ 1, n > n0}).

By Corollary 1.21, Kn0 is well defined in the sense that it makes no dif-
ference in which space we take the closed convex hull. Furthermore, by
Proposition 1.13 it follows that Kn0 is compact. Define

C := {y ∈ span(x1, ..., xn0) : ℜ(y∗y) = 1}.

We claim the following: C is closed in Y andX; C is convex; we can assume
C to be nonempty and C and Kn0 are disjoint. To prove C is closed in Y ,
let y ∈ C such that there is a sequence {yn}n∈N in C converging to y. Then
it follows that ℜ(y∗y) = limn→∞ℜ(y∗yn) = 1, hence y ∈ C. So C is closed
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in span(x1, ..., xn0) as a subspace of Y and as this is a finite-dimensional
subspace and hence closed, this implies C is closed in Y . Since finite-
dimensional topological vector spaces have a unique Hausdorff topology, we
can also view span(x1, ..., xn0) as a finite-dimensional subspace of X so by
the same argument it follows that C is closed in X. Now pick x, y ∈ C and
t ∈ R, then it follows that ℜ[y∗(tx+(1−t)y)] = tℜ(y∗x)+(1−t)ℜ(y∗y) = 1
implying that tx+(1−t)y ∈ C for all x, y ∈ C and t ∈ R. In particular, this
holds for all t ∈ [0, 1] implying that C is convex. Now suppose that C is
empty, this happens if and only if span(x1, ..., xn0) ⊂ ker(y∗). Let x∗ ∈ X∗

be the zero functional and let x ∈ K ⊂ co({xn : n ∈ N}). By Proposition
1.13 it follows we can write x =

∑
n∈N tnxn with tn ≥ 0 for all n ∈ N and∑

n∈N tn ≤ 1, then we have that |y∗x− x∗x| = |y∗x| =
∑

n>n0
tn|y∗xn| ≤ δ

2
.

We see that x∗ = 0 works, therefore we can assume that for at least one n
such that 1 ≤ n ≤ n0 we have that y

∗xn ̸= 0 and hence C is nonempty. To
prove C and Kn0 are disjoint, we pick an element y = 2δ−1x ∈ Kn0 such
that x ∈ co({αxn : α ∈ F, |α| ≤ 1, n > n0}). By Proposition 1.13 we can
write x =

∑
n>n0

tnαnxn with tn ≥ 0, |αn| ≤ 1 and
∑

n∈N tn ≤ 1. It follows
that |y∗y| = 2δ−1|y∗x| ≤ 2δ−1

∑
n>n0

tn|αn||y∗xn| <
∑

n>n0
tn|αn| ≤ 1. So

for all y ∈ Kn0 it follows that ℜ(y∗y) ≤ |y∗y| < 1 hence y /∈ C. The
converse argument is the same, so it follows that C and Kn0 are disjoint.

This means that we can apply the separating hyperplane theorem to C
and Kn0 to obtain a real number b ∈ R and a bounded functional x∗ ∈ X∗

such that ℜ(x∗x) < b for all x ∈ Kn0 and ℜ(x∗x) > b for all x ∈ C.
However, as for all x, y ∈ C and t ∈ R we have that tx + (1 − t)y ∈
C, it follows that ℜx∗ must be constant on C. Suppose x, y ∈ C and
ℜ(x∗x) ̸= ℜ(x∗y), then the map t 7→ tℜ(x∗x) + (1− t)ℜ(x∗y) is surjective
on R, implying that ℜx∗(C) = R, contradicting the existence of b. As
0 ∈ Kn0 it follows that 0 ∈ ℜx∗(Kn0), so ℜx∗(C) ̸= 0. By rescaling we
can therefore assume that ℜx∗(C) = 1 = ℜy∗(C). We claim that this
implies that x∗x = y∗x for all x ∈ span(x1, ..., xn0). First suppose that
x ∈ span(x1, ..., xn0) and that ℜ(y∗x) = r ̸= 0, then it follows that

ℜ(y∗x) = r

r
ℜ(y∗x) = rℜ

(
y∗
(x
r

))
= rℜ

(
x∗
(x
r

))
= ℜ(x∗x).

Now suppose that ℜ(y∗x) = 0 and let z ∈ C, then it follows that

ℜ(x∗x) = ℜ(x∗(x+ z − z)) = ℜ(x∗(x+ z))−ℜ(x∗z)
= ℜ(y∗(x+ z))−ℜ(y∗z) = ℜ(y∗(x+ z − z)) = 0.

This means that for all x ∈ span(x1, ..., xn0) we have that ℜ(x∗x) = ℜ(y∗x).
Now, this also implies that

ℑ(x∗x) = ℜ(x∗(−ix)) = ℜ(y∗(−ix)) = ℑ(y∗x),
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and therefore it follows that x∗x = y∗x for all x ∈ span(x1, ..., xn0). In
particular, it follows that x∗xn = y∗xn for all n such that 1 ≤ n ≤ n0.

By Corollary 1.9, Kn0 is balanced. Let n > n0 and let un be defined
by x∗xn = |x∗xn|un where we put un = 1 if x∗xn = 0. Since Kn0 is
balanced and |un| = 1 for all n > n0, it follows from Proposition 1.8 that
for all n > n0 we have that 2δ−1xnu

−1
n ∈ Kn0 . Hence it follows that

2δ−1|x∗xn| = 2δ−1x∗(xnu
−1
n ) < ℜx∗(C) = 1 and thus that for all n > n0

we have that |x∗xn| < δ
2
. Now, if x ∈ K there are nonnegative numbers tn

such that
∑

n∈N tn ≤ 1 and x =
∑

n∈N tnxn. It follows that for all x ∈ K

|x∗x− y∗x| =

∣∣∣∣∣∑
n∈N

tn(x
∗xn − y∗xn)

∣∣∣∣∣ ≤ ∑
n>n0

tn (|x∗xn|+ |y∗xn|) < δ.

Proof of Theorem 1.2, 1 =⇒ 2. Let X be a Banach space and suppose
that X has the approximation property. We need to prove that for every
compact K ⊂ X and ϵ > 0 there exists a finite-rank operator TK,ϵ ∈
F (X) such that ∥TK,ϵx − x∥ < ϵ for all x ∈ K. So let K ⊂ X be an
arbitrary compact subset and let ϵ > 0. Let {xn}n∈N and S ⊂ X be as
in Proposition 1.22. Let Y be the Banach space constructed from S as
in Proposition 1.19 and denote the closed unit ball of Y by BY . Let I
be the identity map from Y into X. Then by Proposition 1.19 we have
that I ∈ K(Y,X). Since X has the approximation property, it follows
that there exists a ΦK,ϵ ∈ F (Y,X) such that ∥ΦK,ϵ − I∥ < ϵ

2
where ∥ · ∥

denotes the operator norm in B(Y,X). As K ⊂ BY this implies that
∥ΦK,ϵx− x∥X < ϵ

2
for all x ∈ K. Since ΦK,ϵ ∈ F (Y,X) there exist m ∈ N,

y∗1, ..., y
∗
m ∈ Y ∗ and z1, ..., zm ∈ X such that ΦK,ϵx =

∑m
k=1(y

∗
kx)zk for all

x ∈ Y . Now set δ = ϵ/(2mmax{∥z1∥X , ..., ∥zm∥X}). By Lemma 1.24, there
exist functionals x∗k ∈ X∗ such that |y∗kx − x∗kx| < δ for all x ∈ K. Set
TK,ϵx =

∑m
k=1(x

∗
kx)zk, then for all x ∈ K it follows that

∥TK,ϵx− x∥X ≤∥TK,ϵx− ΦK,ϵx∥X + ∥ΦK,ϵx− x∥X
≤∥TK,ϵx− ΦK,ϵx∥X +

ϵ

2

=

∥∥∥∥∥
m∑
k=1

(x∗kx− y∗kx)zk

∥∥∥∥∥
X

+
ϵ

2

≤
m∑
k=1

|x∗kx− y∗kx|∥zk∥X +
ϵ

2

<δmmax{∥z1∥X , ..., ∥zm∥X}+
ϵ

2
= ϵ.
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2 Well-definedness of the nuclear trace

In this section, we will construct a class of operators on Banach spaces on
which we can define a trace. To motivate the construction, we go back to
the well-known trace for matrices. Let V be a n-dimensional vector space
and let B = {ek}nk=1 be a basis. Let A : V → V be a linear operator
and denote its matrix with respect to the basis B by {aij}ni,j=1. The usual
way of defining the trace of A as Tr(A) =

∑n
k=1 akk is not suitable as

we cannot define this in general Banach spaces. A different approach in
defining the trace is to decompose the operator A into operators of rank
one. If x =

∑n
k=1 xkek ∈ V is an arbitrary vector, then it follows that

Ax =
n∑

k=1

xkAek =
n∑

k=1

(
n∑

j=1

akjxj

)
ek.

So if we define the linear functionals {φk}nk=1 ⊂ V ∗ by φk(x) =
∑n

j=1 akjxj,
then we can write Ax =

∑n
k=1 φk(x)ek. Since φk(ek) =

∑n
j=1 akjδjk =

akk, with δjk the Kronecker delta, it follows that we also define Tr(A) =∑n
k=1 φk(ek). Note that this new definition of the trace can in principle be

used in any Banach space, as we eliminated the need for a matrix repre-
sentation of our operator. However, we now require the operator to have a
decomposition in terms of rank one operators.

If X and Y are Banach spaces and we have x∗ ∈ X∗ and y ∈ Y , then we
define the operator x∗ ⊗ y ∈ B(X, Y ) by x∗ ⊗ y : x 7→ x∗(x)y. We see that
x∗ ⊗ y ∈ F (X, Y ) for all x∗ ∈ X∗ and y ∈ Y as its image has dimension 0
or 1. Our discussion above motivates to introduce the following concepts.

Definition 2.1. Let X and Y be Banach spaces and let A ∈ B(X, Y ).
Then A is a nuclear operator if and only if there are sequences {x∗n}n∈N in
X∗ and {yn}n∈N in Y such that

∑∞
n=1 ∥x∗n∥∥yn∥ <∞ and A =

∑∞
n=1 x

∗
n⊗yn,

which is called the nuclear representation. We define N(X, Y ) as the space
of all nuclear operators A : X → Y .

From Definition 2.1 it is immediately clear that if A ∈ N(X, Y ), then
A ∈ F (X, Y ). Furthermore, it also follows that A is compact. As is clear
from our discussion above, we are interested in these nuclear operators as
they seem very suitable for defining a trace.

Definition 2.2. Let X be a Banach space and let A ∈ N(X) be a nuclear
operator, so A =

∑∞
n=1 x

∗
n⊗xn with

∑∞
n=1 ∥x∗n∥∥xn∥ <∞. Then we define

the nuclear trace of the representation by

Tr

(
∞∑
n=1

x∗n ⊗ xn

)
=

∞∑
n=1

x∗n(xn).
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It should be noted that Definitions 2.1 and 2.2 together do not imply
that the nuclear trace is well-defined for a nuclear operator A. The reason
for this is that a nuclear representation of a nuclear operator A is not unique
and the definition of the nuclear trace depends on the chosen representation.
Of course, we would like to prove that the trace is invariant under the chosen
representation of a nuclear operator. However, this is not true in general.
In this section, we will address the question of the well-definedness of this
nuclear trace and we will prove that this is the case if and only if the Banach
space X has the approximation property. To do this efficiently, it will prove
to be useful to endow the space B(Y,X) with a certain topology τ that
captures the behaviour of being uniformly approximable on compact sets.
Further references to this topology, in particular closures of sets, will be
distinguished from the operator norm topology by means of a superscript
τ . So if A ⊂ B(Y,X), then the closure with respect to the topology τ will
be denoted by A

τ
.

2.1 The topology of uniform convergence on compact
sets and its continuous linear functionals

To construct the topology mentioned in the introduction of this section,
we first need some definitions. The following construction is based on
Lindenstrauss and Tzafriri [13, p. 31].

Definition 2.3. Let X and Y be normed spaces over F and let K ⊂ X be
compact. For all operators T ∈ B(X, Y ), we define ∥T∥K = supx∈K ∥Tx∥Y .

Lemma 2.4. Let X and Y be normed spaces over F and let K ⊂ X be
compact. Then ∥ · ∥K is a seminorm on B(X, Y ).

Proof. Let X and Y be normed spaces over F and let K ⊂ X be compact.
Suppose that S, T ∈ B(X, Y ) and α ∈ F. It follows that

∥αT∥K = sup
x∈K

∥αTx∥Y = sup
x∈K

|α|∥Tx∥Y = |α| sup
x∈K

∥Tx∥Y = |α|∥T∥K ,

and

∥S + T∥K = sup
x∈K

∥Sx+ Tx∥Y ≤ sup
x∈K

(∥Sx∥Y + ∥Tx∥Y ) ≤ ∥S∥K + ∥T∥K .

Together these two properties imply that ∥ · ∥K is a seminorm on B(X, Y ).

Remark. 1. The seminorms ∥ · ∥K need not be norms. Take for example
K = {x} for some nonzero x ∈ X. If dim(X) ≥ 2, we can always
find a linear operator T ∈ B(X, Y ) such that T ̸= 0 but x ∈ ker(T ).
It follows that T ̸= 0 but ∥T∥{x} = 0.
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2. For each nonzero T ∈ B(X, Y ) there exists a compact K ⊂ X such
that ∥T∥K > 0. Take for example K = {x} with x ∈ X such that
Tx ̸= 0.

The second remark implies that the set of all seminorms as in Definition
2.3 is separating. So we can use it to construct a locally convex Hausdorff
topology on the space B(X, Y ).

Definition 2.5. Let X and Y be Banach spaces. Define

F := {∥ · ∥K : K ⊂ X compact}.

We define the topology of uniform convergence on compact sets or ucc topo-
logy, written as τ , as the topology generated by the open balls of all semi-
norms in F . That is, the open balls of all seminorms in F are a subbase
for τ .

Considering the locally convex space (B(X, Y ), τ) we can wonder what
the continuous linear functionals with respect to this topology look like.
Most of the remaining part of this subsection will be devoted to answer-
ing this question. Furthermore, from now on we write B

(K)
r (T ) for the

open “ball” with radius r > 0 centered at T ∈ B(X, Y ) with respect to
the seminorm ∥ · ∥K for some compact K ⊂ X. However, before we start
constructing the continuous linear functionals on (B(X, Y ), τ), we might
wonder why we care about this topology. One of the reasons is that us-
ing this new topology, we can rephrase the property of being uniformly
approximable on compact sets very conveniently.

Lemma 2.6. Let T ∈ B(X, Y ) and suppose we have n positive real numbers
ϵ1, ..., ϵn and n compact sets K1, ..., Kn. Then there exist an ϵ > 0 and a
compact K ⊂ X such that the following inclusion holds:

B(K)
ϵ (T ) ⊂

n⋂
i=1

B(Ki)
ϵi

(T ).

Proof. Let T ∈ B(X, Y ) and suppose we have n positive real numbers
ϵ1, ..., ϵn and n compact sets K1, ..., Kn. Suppose that K =

⋃n
i=1Ki and

that ϵ = min1≤i≤n ϵi. K is compact as it is a finite union of compact sets.

Let S ∈ B
(K)
ϵ (T ) be arbitrary. Then it follows that for all i ∈ N such that

i ≤ n that
∥S − T∥Ki

≤ ∥S − T∥K < ϵ ≤ ϵi.

Therefore it follows that S ∈ B
(Ki)
ϵi (T ) for all i ∈ N such that i ≤ n, hence

it follows that

B(K)
ϵ (T ) ⊂

n⋂
i=1

B(Ki)
ϵi

(T ).
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Proposition 2.7. Let A ∈ B(X, Y ) be a linear operator and let V ⊂
B(X, Y ) be a linear subspace. Then the following two assertions are equiv-
alent.

1. For every compact K ⊂ X and every ϵ > 0, there exists some TK,ϵ ∈
V such that ∥TK,ϵx− Ax∥Y < ϵ for all x ∈ K.

2. A ∈ V
τ
.

Proof. We first prove the implication 1 =⇒ 2. Assume that for every
compact K ⊂ X and every ϵ > 0, there exists some TK,ϵ ∈ V such that
∥TK,ϵx − Ax∥Y < ϵ for all x ∈ K. We will argue by contradiction, so
suppose A /∈ V

τ
. As V

τ
is closed, we can use Lemma 2.6 to obtain an

ϵ > 0 and compact K ⊂ X such that B
(K)
ϵ (A) ∩ V = ∅. However, this

implies that there exists no operator T ∈ V such that ∥Tx−Ax∥Y < ϵ
2
for

all x ∈ K, which contradicts the assumption. So it follows that A ∈ V
τ
.

To prove 2 =⇒ 1, assume that A ∈ V
τ
. We again argue by contradic-

tion. Suppose there exists a compact K ⊂ X and an ϵ > 0 such that there
is no operator T ∈ V such that ∥Tx−Ax∥Y < ϵ for all x ∈ K. This implies

that B
(K)
ϵ (A)∩V = ∅ and therefore it follows that V ⊂ B(X, Y )\B(K)

ϵ (A).

Since the latter is closed, it follows that V
τ ⊂ B(X, Y ) \ B(K)

ϵ (A). By

assumption, this implies that A ∈ B(X, Y ) \ B(K)
ϵ (A) which is a contra-

diction. So for every compact K ⊂ X and every ϵ > 0, there exists some
TK,ϵ ∈ V such that ∥TK,ϵx− Ax∥Y < ϵ for all x ∈ K.

Corollary 2.8. Let X be a Banach space and let I be the identity operator
on X. Then X has the approximation property if and only if I ∈ F (X)

τ
.

Proof. This follows from combining Theorem 1.2 with Proposition 2.7 for
A = I and V = F (X).

We see that using the ucc-topology, our second characterization of the
approximation property becomes very concise. The ucc-topology also al-
lows us to give to different characterizations of the approximation property.

Theorem 2.9 ([13, Theorem 1.e.4]). Let X be a Banach space. Then the
following are equivalent:

1. I ∈ F (X)
τ
.

2. F (X, Y )
τ
= B(X, Y ) for all Banach spaces Y .

3. F (Y,X)
τ
= B(Y,X) for all Banach spaces Y .

Proof. The implications 2 =⇒ 1 and 3 =⇒ 1 are clear by taking X = Y .
We prove the remaining implications 1 =⇒ 2 and 1 =⇒ 3.
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1 =⇒ 2: It suffices to prove that B(X, Y ) ⊂ F (X, Y )
τ
as the converse

inclusion is trivial. Let A ∈ B(X, Y ) be a bounded linear operator. Let

ϵ > 0 be arbitrary and let K ⊂ X be compact. As I ∈ F (X)
τ
, it follows

by Proposition 2.7 that there exists a T ∈ F (X) such that ∥x− Tx∥X < ϵ
for all x ∈ K. This implies that ∥Ax − ATx∥Y ≤ ∥A∥∥x − Tx∥X < ∥A∥ϵ
for all x ∈ K. As ϵ and K were arbitrary and we have that AT ∈ F (X, Y ),

it follows that A ∈ F (X, Y )
τ
, again by Proposition 2.7. We conclude that

F (X, Y )
τ
= B(X, Y ).

1 =⇒ 3: It again suffices to prove that B(Y,X) ⊂ F (Y,X)
τ
. Let

A ∈ B(Y,X) be a bounded linear operator. Let ϵ > 0 be arbitrary and
let K ⊂ Y be compact. As A is continuous, the image C = AK ⊂ X is
compact. As I ∈ F (X)

τ
, it follows again that there exists a T ∈ F (X)

such that ∥x−Tx∥X < ϵ for all x ∈ C. This implies that ∥Ay−TAy∥X < ϵ
for all y ∈ K. As ϵ and K were arbitrary and we have that TA ∈ F (Y,X),

it follows that A ∈ F (Y,X)
τ
. We conclude that F (Y,X)

τ
= B(Y,X).

Returning to the construction of the continuous linear functionals, we
need a few preparatory results to prove the final result.

Lemma 2.10. Let φ be a linear functional on (B(X, Y ), τ). Then φ is
continuous if and only if there exist a C > 0 and a compact K ⊂ X such
that

|φ(T )| ≤ C∥T∥K ∀T ∈ B(X, Y ).

Proof. Let φ be a linear functional on (B(X, Y ), τ). To prove the for-
ward implication, let B1(0) be the open unit ball centred at 0 ∈ F. By
continuity of φ, it follows that φ−1(B1(0)) is an open neighbourhood of
0 ∈ B(X, Y ). So we can find n positive real numbers ϵ1, ..., ϵn and n

compact sets K1, ..., Kn such that
⋂n

i=1B
(Ki)
ϵi (0) ⊂ φ−1(B1(0)). By ap-

plying Lemma 2.6, we can find a compact K ⊂ X and an ϵ > 0 such
that B

(K)
ϵ (0) ⊂ φ−1(B1(0)). So it follows that φ(B

(K)
ϵ (0)) ⊂ B1(0) and

thus by rescaling we find φ(B
(K)
1 (0)) ⊂ Bϵ−1(0). If ∥T∥K = 0, then

for all m ∈ N we have that φ(T ) ∈ φ(B
(K)

m−1(0)) ⊂ B(mϵ)−1(0) hence
φ(T ) ∈

⋂
m∈NB(mϵ)−1(0) = {0}. Now suppose that ∥T∥K ̸= 0 then

|φ(T )| = 2∥T∥K
∣∣∣∣φ( T

2∥T∥K

)∣∣∣∣ ≤ 2ϵ−1∥T∥K .

By our previous calculation, this inequality obviously extends to the case
∥T∥K = 0, proving the forward implication.

For the converse implication, assume there exists a C > 0 and a compact
K ⊂ X such that for all T ∈ B(X, Y ) we have that |φ(T )| ≤ C∥T∥K . Let
U ⊂ F be open. We prove that φ−1(U) is open. Suppose that T ∈ φ−1(U),
thus we have that φ(T ) ∈ U . Since U is open, we can find an ϵ > 0 such
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that Bϵ(φ(T )) ⊂ U . By assumption, it follows that B
(K)

ϵC−1(T ) ⊂ φ−1(U)
hence φ−1(U) is open and thus φ is continuous.

Lemma 2.11. Let {an}n∈N be a sequence of positive real numbers such that∑∞
n=1 an converges. Then there exists a sequence of positive real numbers

{ηn}n∈N such that ηn → ∞ as n→ ∞ and
∑∞

n=1 anηn converges.

Proof. Let {an}n∈N be a sequence of positive real numbers such that
∑∞

n=1 an
converges. If only finitely many an are nonzero, any divergent sequence will
work, therefore we can assume that infinitely many an are nonzero. De-
note the sum by S =

∑∞
n=1 an. Define the tails of the series as tn =∑∞

m=n am. It follows that t1 = S and as
∑∞

n=1 an converges, we also have
that limn→∞ tn = 0. As infinitely many an are nonzero, it follows that
tn > 0 for all n ∈ N. Now define ηn = 1/

√
tn. It is obvious that the

sequence {ηn}n∈N diverges. It also follows that

∞∑
n=1

anηn =
∞∑
n=1

tn − tn+1√
tn

=
∞∑
n=1

(
√
tn −

√
tn+1)(

√
tn +

√
tn+1)√

tn

≤ 2
∞∑
n=1

(
√
tn −

√
tn+1) = 2(

√
S − lim

n→∞

√
tn) = 2

√
S,

where the second-last equality follows from the fact that we have a tele-
scoping series. It follows that the sequence {ηn}n∈N is indeed a divergent
series such that

∑∞
n=1 anηn converges.

Definition 2.12. Let X be a Banach space. For p ≥ 1 we define the space
(
⊕∞

n=1X)p as the space of all sequences {xn}n∈N inX such that the lp-norm

is finite: ∥{xn}n∈N∥p = (
∑∞

n=1 ∥xn∥p)
1/p

<∞. We also define (
⊕∞

n=1X)0 to
be the space of sequences {xn}n∈N in X such that limn→∞ xn = 0, equipped
with the supremum norm ∥ · ∥∞.

Remark. The spaces defined in Definition 2.12 are also complete, see for
example Megginson [15, Appendix C].

Definition 2.13. Let X be Banach space. For all sequences {xn}n∈N in
X, we define the projection on the i-th coordinate by the map πi such that
πi({xn}n∈N) = xi.

Lemma 2.14. Let X be a Banach space and suppose that i ∈ N. Let πi
be the projection map from Definition 2.13 restricted to (

⊕∞
n=1X)

0
. Then

∥πi∥ = 1.

Proof. Let X be a Banach space and suppose that i ∈ N. Let πi be the
projection map from Definition 2.13 restricted to (

⊕∞
n=1X)0. Then for

any sequence {xn}n∈N ∈ (
⊕∞

n=1X)0 we have that ∥πi({xn}n∈N)∥ = ∥xi∥ ≤

26



∥{xn}n∈N∥∞. It follows that ∥πi∥ ≤ 1. Now let x ∈ X be a unit vector and
let {xn}n∈N be the sequence defined by xn = xδn,i, where δn,i denotes the
Kronecker delta. Then {xn}n∈N ∈ (

⊕∞
n=1X)0 and ∥{xn}n∈N∥∞ = 1. So

∥πi({xn}n∈N)∥ = ∥x∥ = 1 = ∥{xn}n∈N∥∞, hence ∥πi∥ = 1.

Proposition 2.15. Let X be a Banach space and denote its dual space
by X∗. Then the spaces (

⊕∞
n=1X

∗)1 and
(
(
⊕∞

n=1X)0
)∗

are isometrically
isomorphic.

Proof. Let X be a Banach space and X∗ its dual space. Define the map
Φ : (

⊕∞
n=1X

∗)1 →
(
(
⊕∞

n=1X)0
)∗

as {x∗n}n∈N 7→
∑∞

n=1 x
∗
n ◦ πn. Then by

Lemma 2.14 it follows that∥∥∥∥∥
∞∑
n=1

x∗n ◦ πn

∥∥∥∥∥ ≤
∞∑
n=1

∥x∗n∥∥πn∥ =
∞∑
n=1

∥x∗n∥ <∞,

hence Φ is well defined. Furthermore, linearity of Φ is clear. We are done
when we prove that Φ is isometric and surjective.

To prove that Φ is isometric, we need to show that ∥
∑∞

n=1 x
∗
n ◦ πn∥ =∑∞

n=1 ∥x∗n∥ for all {x∗n}n∈N ∈ (
⊕∞

n=1X
∗)

1
. By the computation above,

it remains to show that ∥
∑∞

n=1 x
∗
n ◦ πn∥ ≥

∑∞
n=1 ∥x∗n∥ for all {x∗n}n∈N ∈

(
⊕∞

n=1X
∗)1. Let {x∗n}n∈N ∈ (

⊕∞
n=1X

∗)1 be arbitrary, let ϵ > 0 and let
N ∈ N. Then by definition of the operator norm, there exists xi ∈ X such
that ∥xi∥ ≤ 1 and x∗ixi > ∥x∗i ∥ − ϵ

N
for all i ≤ N . Now define {yn}n∈N

by yi = xi for all i ≤ N and yn = 0 for all n > N . It follows that
{yn}n∈N ∈ (

⊕∞
n=1X)0 and ∥{yn}n∈N∥∞ ≤ 1. So we have∥∥∥∥∥

∞∑
n=1

x∗n ◦ πn

∥∥∥∥∥ ≥

∥∥∥∥∥
(

∞∑
n=1

x∗n ◦ πn

)
({ym}m∈N)

∥∥∥∥∥ =

∥∥∥∥∥
N∑

n=1

x∗n(xn)

∥∥∥∥∥
>

N∑
n=1

∥x∗n∥ −
ϵ

N
= −ϵ+

N∑
n=1

∥x∗n∥.

We conclude that for all ϵ > 0 and N ∈ N, we have that
∑N

n=1 ∥x∗n∥ <
∥
∑∞

n=1 x
∗
n ◦ πn∥+ ϵ and thus

∑∞
n=1 ∥x∗n∥ ≤ ∥

∑∞
n=1 x

∗
n ◦ πn∥. This precisely

means that Φ is an isometry.
To prove surjectivity let φ ∈

(
(
⊕∞

n=1X)0
)∗

be an arbitrary functional.
If x ∈ X is a vector and i ∈ N, define (x)i as the sequence {xn}n∈N with
xn = xδn,i, where δn,i denotes the Kronecker delta. Define the sequence
{x∗n}n∈N by setting x∗nx = φ((x)n). We need to check that {x∗n}n∈N ∈
(
⊕∞

n=1X
∗)1 and that Φ({x∗n}n∈N) = φ. To prove the first assertion, let

ϵ > 0 and N ∈ N. Then for all i ≤ N there exists xi ∈ X such that ∥xi∥ ≤ 1
and x∗ixi > ∥x∗i ∥ − ϵ

N
. Define x =

∑N
i=1(xi)i. Then x ∈ (

⊕∞
n=1X)0 and
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∥x∥∞ ≤ 1. It follows that

|φ(x)| =

∣∣∣∣∣
N∑
i=1

φ((xi)i)

∣∣∣∣∣ =
∣∣∣∣∣

N∑
i=1

x∗ixi

∣∣∣∣∣ > −ϵ+
N∑
i=1

∥x∗i ∥.

We conclude that for all ϵ > 0 and N ∈ N we have that
∑N

i=1 ∥x∗i ∥ < ∥φ∥+ϵ
and thus

∑∞
i=1 ∥x∗i ∥ ≤ ∥φ∥. It follows that {x∗n}n∈N ∈ (

⊕∞
n=1X

∗)1. To
prove that Φ({x∗n}n∈N) = φ, let x = {xn}n∈N ∈ (

⊕∞
n=1X)0 be arbitrary.

Then

Φ({x∗n}n∈N)(x) =

(
∞∑
n=1

x∗n ◦ πn

)
(x) = lim

N→∞

N∑
n=1

x∗n ◦ πn(x) = lim
N→∞

N∑
n=1

x∗nxn

= lim
N→∞

N∑
n=1

φ((xn)n) = lim
N→∞

φ

(
N∑

n=1

(xn)n

)
= φ(x).

The last equality is justified as φ is continuous with respect to the topology

induced by the supremum norm and limN→∞

∥∥∥x−∑N
n=1(xn)n

∥∥∥
∞

= 0 since

x ∈ (
⊕∞

n=1X)0.

Having proven these preparatory results, we can find a general form of
the continuous linear functionals on the space (B(X, Y ), τ). The theorem
and proof given here are from [13].

Theorem 2.16 ([13, Proposition 1.e.3]). Let X and Y be Banach spaces
and let τ be the topology of uniform convergence on compact sets in X.
Then the continuous linear functionals on (B(X, Y ), τ) are precisely all
functionals φ that have a representation in the following form:

φ(T ) =
∞∑
n=1

y∗n(Txn), {xn}n∈N ⊂ X, {y∗n}n∈N ⊂ Y ∗,

∞∑
n=1

∥y∗n∥∥xn∥ <∞.

Proof. First, suppose φ has a representation as in the theorem. We can
assume that xn ̸= 0 for all n ∈ N. By Lemma 2.11, there exists a se-
quence of positive real numbers {ηn}n∈N such that ηn → ∞ as n→ ∞ and∑∞

n=1 ηn∥xn∥∥y∗n∥ = C < ∞. Let K = {xn/∥xn∥ηn}n∈N ∪ {0}. Then K is
compact in X as any cover of open sets has a finite subcover. It follows
that:

|φ(T )| ≤
∞∑
n=1

∥y∗n∥∥Txn∥ =
∞∑
n=1

ηn∥xn∥∥y∗n∥∥T (xn/∥xn∥ηn)∥ ≤ C∥T∥K .

By Lemma 2.10 this implies that φ is a continuous linear functional.
Conversely, suppose that φ is a continuous linear functional on B(X, Y ).

By Lemma 2.10 this implies that there exists a compact K ⊂ X and a
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C > 0 such that |φ(T )| ≤ C∥T∥K for all T ∈ B(X, Y ). By Proposition
1.15, there exists a sequence {xn}n∈N in X, converging to 0, such that K ⊂
co({xn}n∈N). Therefore it follows that |φ(T )| ≤ C∥T∥K ≤ C∥T∥co({xn}n∈N).
So without loss of generality, we can assume that K = co({xn}n∈N). Define
S : B(X, Y ) → (

⊕∞
n=1 Y )0 by T 7→ {Txn}n∈N. Since K = co({xn}n∈N),

we can use Proposition 1.13 to write x =
∑

n∈N tnxn with tn ≥ 0 and∑
n∈N tn ≤ 1 for all x ∈ K. So

|φ(T )| ≤ C∥T∥K = C sup
x∈K

∥Tx∥ = C sup
tn≥0∑

n∈N tn≤1

∥∥∥∥∥T
(∑

n∈N

tnxn

)∥∥∥∥∥
≤ C sup

tn≥0∑
n∈N tn≤1

∑
n∈N

tn∥Txn∥ ≤ C∥S(T )∥∞.

This implies there exists a well-defined linear functional ψ : SB(X, Y ) → F
such that ψ(S(T )) = φ(T ) for all T ∈ B(X, Y ). Indeed, suppose that
T, U ∈ B(X, Y ) and that S(U) = S(T ), then by our calculation above it
follows that |φ(T )−φ(U)| = |φ(T −U)| ≤ C∥S(U)−S(T )∥∞ = 0. There-
fore it follows that φ(U) = φ(T ) and thus ψ is well-defined on SB(X, Y )
and can be continuously extended to the closure of SB(X, Y ) in (

⊕∞
n=1 Y )0.

By definition, it follows that |ψ(S(T ))| = |φ(T )| ≤ C∥S(T )∥∞, hence ψ is
bounded. By the Hahn-Banach theorem, we can extend ψ to a bounded
functional on (

⊕∞
n=1 Y )0 which by Proposition 2.15 corresponds to an el-

ement {y∗n}n∈N ∈ (
⊕∞

n=1 Y
∗)1. By using the isometric isomorphism con-

structed in Proposition 2.15 it follows that

φ(T ) = ψ(S(T )) =
∞∑
n=1

y∗n ◦ πn(S(T )) =
∞∑
n=1

y∗n(Txn) ∀T ∈ B(X, Y ).

As {xn}n∈N is bounded and {y∗n}n∈N is absolutely summable, it follows that∑∞
n=1 ∥y∗n∥∥xn∥ <∞ as required.

Remark. Note that the τ -continuous linear functionals have striking similar-
ities with the nuclear operators. If A : X → Y is a nuclear operator with a
nuclear representation A =

∑∞
n=1 x

∗
n⊗yn, then we can define a τ -continuous

linear functional φ by φ(T ) =
∑∞

n=1 x
∗
n(Tyn) for all T ∈ B(Y,X). If

X = Y , it directly follows that Tr (
∑∞

n=1 x
∗
n ⊗ yn) = φ(I). In Section 2.3,

we will study this connection in more detail.

2.2 Nuclear operators and the nuclear trace

Having developed quite some machinery concerning the ucc-topology, we
can use these results to study nuclear operators. We will spend the rest of
this subsection proving the following result, which is also due to Grothendieck
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[8] and makes use of the idea that we can view the nuclear trace as the eval-
uation of some continuous functional at the identity operator.

Theorem 2.17. Let X be a Banach space. For all nuclear operators
A ∈ N(X), we define the nuclear trace of the operator A as Tr(A) =
Tr (
∑∞

n=1 x
∗
n ⊗ xn) where

∑∞
n=1 x

∗
n ⊗ xn is a nuclear representation of A.

This trace is well-defined (i.e. representation independent) for all nuclear
operators A if and only if X has the approximation property.

To prove Theorem 2.17, we need some intermediate results. The proof
of the following result is from Rudin [21, Theorem 1.13].

Lemma 2.18. Let X be a topological vector space over F with topology τ
and let V ⊂ X be a linear subspace. Then V

τ
is a linear subspace of X.

Proof. First, note that for any set S ⊂ X we have the following equivalence:
x ∈ S

τ
if and only if for all open neighbourhoods U of x, we have S∩U ̸= ∅

(this is a general feature of topological spaces). This implies that for two
subsets A and B of X we have that A

τ
+ B

τ ⊂ A+B
τ
. To prove this,

suppose that a ∈ A
τ
and b ∈ B

τ
and let U be an open neighbourhood

of a + b. We will prove that U ∩ (A + B) ̸= ∅. Since the addition map
+ : X×X → X is continuous, it follows that the inverse image of U under
addition is an open neighbourhood of (a, b) ∈ X × X. Hence there exist
open neighbourhoods U1 of a and U2 of b such that U1 + U2 ⊂ U . Now as
a ∈ A

τ
and b ∈ B

τ
it follows that we can find elements x ∈ A ∩ U1 and

y ∈ B ∩ U2. It follows that x + y ∈ (A + B) ∩ (U1 + U2) ⊂ (A + B) ∩ U .
As (A + B) ∩ U ̸= ∅ for all open neighbourhoods of a + b, it follows that
a+ b ∈ A+B

τ
, we conclude that A

τ
+B

τ ⊂ A+B
τ
.

Furthermore, in topological vector spaces we also have that for any
nonzero scalar α the map Mα : X → X, defined by x 7→ αx, is a homeo-
morphism. Hence, it follows that for any subset S ⊂ X we have that
αS

τ
= αS

τ
. For α = 0, the same equality holds since {0} is closed. We

conclude that for all scalars α, we have that αS
τ
= αS

τ
. Now let α be a

scalar and let x, y ∈ V
τ
be two vectors. Then by the previous two results,

it follows that αx+ y ∈ αV
τ
+ V

τ
= αV

τ
+ V

τ ⊂ αV + V
τ ⊂ V

τ
.

Corollary 2.19. Let X be a Banach space and let V ⊂ B(X) be a linear
subspace. Then V

τ
is a linear subspace of B(X).

Remark. Whereas Lemma 2.18 applies to any topological vector space with
a topology τ , we now assume τ to be the ucc-topology.

To proceed, we need the following theorem, which is a consequence of
the separating hyperplane theorem for locally convex spaces. We will not
give proof. This can be found in Rudin [21].
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Theorem 2.20 ([21, Theorem 3.5]). Let X be a locally convex space and
denote its topology by τ . Let V ⊂ X be a linear subspace of X. Suppose
that x /∈ V

τ
. Then there exists a continuous linear functional φ such that

φ(x) = 1 and φ vanishes on V .

Corollary 2.21. Let X be a Banach space and let τ be the ucc-topology
of B(X). Let V ⊂ B(X) be a linear subspace and suppose that A ∈
B(X). Then A ∈ V

τ
if and only if each continuous linear functional φ

of (B(X), τ) that vanishes on V also vanishes on A.

Proof. First, suppose that A ∈ V
τ
. Let φ be a continuous linear functional

of (B(X), τ) that vanishes on V . It follows that V ⊂ φ−1({0}). Continuity
of φ implies that φ−1({0}) is τ -closed. So, it follows that V

τ ⊂ φ−1({0})
and therefore that A ∈ φ−1({0}). Hence φ vanishes on A.

Conversely, suppose that each continuous linear functional φ of (B(X), τ)
that vanishes on V also vanishes on A. Suppose that A /∈ V

τ
. By Theorem

2.20, there exists a continuous linear functional that vanishes on V but is
non-zero on A, which is a clear contradiction.

Proposition 2.22. Let X be a Banach space. Then X has the approxi-
mation property if and only if each nuclear representation of the 0-operator
has nuclear trace 0.

Proof. Let X be a Banach space. Combining Corollary 2.8 and Corollary
2.21 for A = I and V = F (X) gives that X has the approximation property
if and only if each τ -continuous functional that vanishes on F (X) also
vanishes on I.

Suppose that each τ -continuous functional that vanishes on all finite
rank operators also vanishes on I and let

∑∞
n=1 x

∗
n⊗xn be a nuclear repre-

sentation of the 0-operator. Then it follows that
∑∞

n=1 x
∗
n(x)xn = 0 for all

x ∈ X. Let φ be the continuous functional given by φ(T ) =
∑∞

n=1 x
∗
n(Txn).

Then for all x∗ ∈ X∗ and x ∈ X

φ(x∗ ⊗ x) =
∞∑
n=1

x∗n(x
∗ ⊗ x(xn)) =

∞∑
n=1

x∗n(x
∗(xn)x) =

∞∑
n=1

x∗n(x)x
∗(xn)

= x∗

(
∞∑
n=1

x∗n(x)xn

)
= x∗(0) = 0.

So φ vanishes on all rank one operators and therefore by linearity it follows
that φ vanishes on all finite rank operators. By assumption, it now follows
that Tr (

∑∞
n=1 x

∗
n ⊗ xn) = φ(I) = 0.

Conversely, suppose that each nuclear representation of the 0-operator
has nuclear trace 0. Let φ be a τ -continuous linear functional that van-
ishes on F (X). We are finished when we prove that φ(I) = 0. By Theo-
rem 2.16 there exist sequences {y∗n}n∈N in X∗ and {yn}n∈N in X such that
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∑∞
n=1 ∥y∗n∥∥yn∥ <∞ and φ(T ) =

∑∞
n=1 y

∗
n(Tyn). As φ vanishes on all finite

rank operators, it vanishes in particular on all rank one operators. So it
follows that

0 = φ(x∗ ⊗ x) =
∞∑
n=1

y∗n(x
∗ ⊗ x(yn)) =

∞∑
n=1

y∗n(x
∗(yn)x) =

∞∑
n=1

y∗n(x)x
∗(yn)

= x∗

(
∞∑
n=1

y∗n(x)yn

)
∀x∗ ∈ X∗ ∀x ∈ X.

As the bounded linear functionals separate all points y ∈ X, it follows
that

∑∞
n=1 y

∗
n(x)yn = 0 for all x ∈ X. Hence

∑∞
n=1 y

∗
n ⊗ yn is a nuclear

representation of the 0-operator, which by assumption has nuclear trace 0.
It follows that φ(I) = Tr (

∑∞
n=1 y

∗
n ⊗ yn) = 0.

With this result, we can now prove our main result of this section,
Theorem 2.17.

Proof of Theorem 2.17. Let X be a Banach space. First, suppose the
nuclear trace is well-defined for all nuclear operators A ∈ N(X). Let∑∞

n=1 x
∗
n⊗xn be a nuclear representation of the 0-operator. As

∑∞
n=1 x

∗
n⊗0

is also a nuclear representation of the 0-operator and the nuclear trace is
well-defined by assumption, it follows that

Tr

(
∞∑
n=1

x∗n ⊗ xn

)
= Tr

(
∞∑
n=1

x∗n ⊗ 0

)
=

∞∑
n=1

x∗n(0) = 0.

So each representation of the 0-operator has a nuclear trace equal to 0
and therefore by Proposition 2.22 it follows that X has the approximation
property.

Conversely, suppose that X has the approximation property. Let A ∈
N(X) be a nuclear operator. Suppose that

∑∞
n=1 x

∗
n⊗xn and

∑∞
n=1 y

∗
n⊗yn

are two nuclear representations of A. Then their difference

∞∑
n=1

x∗n ⊗ xn −
∞∑
n=1

y∗n ⊗ yn = A− A = 0

is a nuclear representation of the 0-operator. Since X has the approx-
imation property by assumption, it follows from Proposition 2.22 that
Tr (
∑∞

n=1 x
∗
n ⊗ xn −

∑∞
n=1 y

∗
n ⊗ yn) = 0. From Definition 2.2 it follows that

the nuclear trace is additive, hence it follows that Tr (
∑∞

n=1 x
∗
n ⊗ xn) =

Tr (
∑∞

n=1 y
∗
n ⊗ yn). So all representations of A have the same nuclear trace,

hence the nuclear trace of A is well-defined.
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2.3 The Banach space N(X, Y )

In the previous subsection, we proved that the nuclear trace is well-defined
for all nuclear operators in N(X) if and only if X has the approximation
property. Moreover, from the definition of the nuclear trace it is clear that
the map Tr : N(X) → F is a linear operator if X has the approximation
property. Motivated by this, we can try to equip N(X, Y ) with a norm
∥ · ∥N such that the nuclear trace is a bounded functional on the space
(N(X), ∥ · ∥N). The construction of this is motivated by Diestel, Fourie
and Swart [3, p. 10, Proposition 1.14] where the projective tensor product

X∗⊗̂Y is endowed with a similar norm.
Furthermore, we also encountered an intimate connection between nu-

clear representations of nuclear operators in N(X, Y ) and the continuous
functionals on (B(Y,X), τ). This invites us to take a closer look at these
spaces, which we will do at the end of this section.

Definition 2.23. Let X and Y be Banach spaces. Then for all nuclear
operators A ∈ N(X, Y ) we define the nuclear norm

∥A∥N = inf

{
∞∑
n=1

∥x∗n∥∥yn∥ : A =
∞∑
n=1

x∗n ⊗ yn

}
.

Proposition 2.24. Let X and Y be Banach spaces. Then for all nuclear
operators A ∈ N(X, Y ) we have that ∥A∥ ≤ ∥A∥N and the nuclear norm
∥ · ∥N is a norm on N(X, Y ).

Proof. Let X and Y be Banach spaces and let A ∈ N(X, Y ) be a nuclear
operator. Then for any nuclear representation A =

∑∞
n=1 x

∗
n ⊗ yn of A

we have that ∥A∥ ≤
∑∞

n=1 ∥x∗n∥∥yn∥. When we take the infimum over
all nuclear representations of A it follows that ∥A∥ ≤ ∥A∥N for all A ∈
N(X, Y ).

To prove that ∥·∥N is a norm, suppose that α ∈ F and A,B ∈ N(X, Y ).
It follows that ∥αA∥N = inf {

∑∞
n=1 |α|∥x∗n∥∥yn∥ : αA =

∑∞
n=1 x

∗
n ⊗ αyn} =

|α|∥A∥N . We also have that

∥A+B∥N = inf

{
∞∑
n=1

∥x∗n∥∥yn∥ : A+B =
∞∑
n=1

x∗n ⊗ yn

}

≤
∞∑
n=1

∥x∗n∥∥yn∥+
∞∑
n=1

∥u∗n∥∥vn∥,

for all representations A =
∑∞

n=1 x
∗
n⊗yn and B =

∑∞
n=1 u

∗
n⊗vn. By taking

the infima over the representations of A and B we obtain ∥A + B∥N ≤
∥A∥N + ∥B∥N . Finally, if ∥A∥N = 0 it follows that ∥A∥ ≤ ∥A∥N = 0 so
∥A∥ = 0 and hence A = 0. So ∥ · ∥N is a norm on N(X, Y ).
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Having constructed the normed space (N(X, Y ), ∥ · ∥N), we can wonder
if this space is complete too. This turns out to be the case. We give a proof
according to Pietsch [17].

Proposition 2.25 ([17, Lemma 3.1.3]). Let X and Y be Banach spaces.
Then the normed space (N(X, Y ), ∥ · ∥N) is Banach.

Proof. Let X and Y be Banach spaces and let {Tn}n∈N be a Cauchy se-
quence in (N(X, Y ), ∥·∥N). As ∥Tn−Tm∥ ≤ ∥Tn−Tm∥N for all n,m ∈ N, it
follows that {Tn}n∈N is also a Cauchy sequence in B(X, Y ) with the respect
to the operator norm. Since Y is complete, so is B(X, Y ) and therefore
{Tn}n∈N has a ∥ · ∥-limit T in B(X, Y ).

Since {Tn}n∈N is Cauchy in (N(X, Y ), ∥ · ∥N), there exists an increasing
sequence of integers Nk such that ∥Tn − Tm∥N < 1/2k+2 for all n,m ≥
Nk. By definition of the nuclear norm, this implies that for all k ∈ N
we have nuclear representations TNk+1

− TNk
=
∑

n∈N(x
(k)
n )∗ ⊗ y

(k)
n with∑

n∈N ∥(x
(k)
n )∗∥∥y(k)n ∥ < 1/2k+2. As this holds for all k ∈ N, it follows that

for all l ∈ N

TNk+l
− TNk

=
k+l−1∑
m=k

(TNm+1 − TNm) =
k+l−1∑
m=k

∑
n∈N

(x(m)
n )∗ ⊗ y(m)

n .

As Tn converges to T , we can take the limit as l → ∞. It follows that

T − TNk
=

∞∑
m=k

(TNm+1 − TNm) =
∞∑

m=k

∑
n∈N

(x(m)
n )∗ ⊗ y(m)

n .

As

∞∑
m=k

∑
n∈N

∥(x(m)
n )∗∥∥y(m)

n ∥ ≤
∞∑

m=k

1

2m+2
=

1

2k+1
,

it follows that T − TNk
is nuclear and that ∥T − TNk

∥N ≤ 1/2k+1. So
T = (T − TNk

) + TNk
is nuclear. We claim that T is also the limit of

{Tn}n∈N with respect to the nuclear norm. Let ϵ > 0 be given. Then there
exists a k ∈ N such that 1/2k < ϵ. So for all m ≥ Nk it follows that
∥T −Tm∥N ≤ ∥T −TNk

∥N +∥TNk
−Tm∥N ≤ 1/2k+1+1/2k+2 < 1/2k < ϵ. It

follows that {Tn}n∈N converges to T ∈ N(X, Y ) with respect to the nuclear
norm, hence (N(X, Y ), ∥ · ∥N) is complete.

Remark. Note that we did not use completeness of X in the proof of Propo-
sition 2.25. However, the result is formulated this way as we only consider
nuclear operator acting on Banach spaces. If we would allow for nuclear
operators on normed spaces, then we would only require completeness of
Y .
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We will now prove that the nuclear trace is indeed a bounded linear
functional on the space N(X) if X has the approximation property and we
equip N(X) with the nuclear norm.

Proposition 2.26. Let X be a Banach space that has the approximation
property. Then the nuclear trace Tr : N(X) → F is a bounded linear
functional on (N(X), ∥ · ∥N).

Proof. Let X be a Banach space that has the approximation property.
Then the nuclear trace is well-defined by Theorem 2.17 and is linear by
definition. Now suppose that A ∈ N(X) and that ϵ > 0. By definition of
the nuclear norm, there exists a nuclear representation A =

∑∞
n=1 x

∗
n ⊗ xn

such that
∑∞

n=1 ∥x∗n∥∥xn∥ < ∥A∥N + ϵ. It follows that

|Tr(A)| =

∣∣∣∣∣Tr
(

∞∑
n=1

x∗n ⊗ xn

)∣∣∣∣∣ =
∣∣∣∣∣

∞∑
n=1

x∗n(xn)

∣∣∣∣∣ ≤
∞∑
n=1

∥x∗n∥∥xn∥ < ∥A∥N + ϵ.

As ϵ > 0 was arbitrary, it follows that |Tr(A)| ≤ ∥A∥N for all A ∈ N(X).
Therefore it follows that ∥Tr ∥ ≤ 1. Hence Tr is a bounded functional of
the Banach space (N(X), ∥ · ∥N).

As promised, we will have a closer look at the connection between nu-
clear operators and the linear functionals that are continuous with respect
to the ucc-topology. To illustrate this, let X and Y be Banach spaces and
N(X, Y ) be the corresponding space of nuclear operators. Let A ∈ N(X, Y )
be a nuclear operator. We have already seen that for any representation
A =

∑
n∈N x

∗
n ⊗ yn, where {x∗n}n∈N is in X∗ and {yn}n∈N is in Y , there ex-

ists a functional φ ∈ (B(Y,X), τ)∗ defined by φ(T ) =
∑

n∈N x
∗
n(Tyn) for all

T ∈ B(Y,X). However, we do not know if different representations of the
same nuclear operator correspond to the same functional. In the next the-
orem, we prove that this is the case if either X or Y has the approximation
property.

Theorem 2.27. Let X and Y be Banach spaces and assume that either X
or Y has the approximation property. Consider the map

Φ : N(X, Y ) → (B(Y,X), τ)∗

defined by Φ(A)(T ) =
∑

n∈N x
∗
n(Tyn) where

∑
n∈N x

∗
n⊗yn is a nuclear repre-

sentation of A and T ∈ B(Y,X). Then Φ is a well-defined (i.e. independent
of the choice of nuclear representation) linear isomorphism.

Proof. We prove that Φ is a well-defined map fromN(X, Y ) to (B(Y,X), τ)∗.
By construction, it is then clear that Φ is a linear map. To prove that Φ
is a linear isomorphism, we show that Φ is injective. Surjectivity directly
follows from Theorem 2.16.
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We prove that Φ is well-defined by showing that Φ
(∑

n∈N x
∗
n ⊗ yn

)
= 0

for any nuclear representation
∑

n∈N x
∗
n ⊗ yn of the 0-operator. The well-

definedness then follows for arbitrary A ∈ N(X, Y ) as the difference of
two different nuclear representations is a nuclear representation of the 0-
operator. So let

∑
n∈N x

∗
n⊗yn be a nuclear representation of the 0-operator

and define φ = Φ
(∑

n∈N x
∗
n ⊗ yn

)
. We need to prove that φ = 0. As either

X or Y has the approximation property, it follows from Theorem 2.9 that
F (Y,X)

τ
= B(Y,X). So it suffices to prove that φ vanishes on F (Y,X) as

ker(φ) is closed. Now let y∗ ∈ Y ∗ and x ∈ X be arbitrary, then

φ(y∗ ⊗ x) =
∑
n∈N

x∗n (y
∗ ⊗ x(yn)) =

∑
n∈N

x∗n(x)y
∗(yn)

= y∗

(∑
n∈N

x∗n(x)yn

)
= y∗(0) = 0.

So φ vanishes on all rank one operators, hence by linearity φ vanishes on
F (Y,X). So φ = 0, hence Φ is well-defined.

We show that Φ is injective by showing that it has a trivial kernel.
Suppose that A ∈ N(X, Y ) is a nuclear operator such that Φ(A) = 0. It
follows that Φ(A)(T ) = 0 for all T ∈ B(Y,X). In particular, this holds for
all bounded linear operators T = y∗ ⊗ x where y∗ ∈ Y ∗ and x ∈ X are
arbitrary. By the same calculations as above, it follows that

Φ(A)(y∗ ⊗ x) = y∗(Ax) = 0 ∀y∗ ∈ Y ∗ ∀x ∈ X.

As Y ∗ separates the points in Y , it follows that Ax = 0 for all x ∈ X,
hence A = 0. We conclude that ker(Φ) = {0} hence Φ is injective.

The following corollary is an obvious consequence of Theorem 2.27.

Corollary 2.28. Let X, Y and Φ be defined as in Theorem 2.27 and let
A ∈ N(X, Y ) be a nuclear operator. Then the following identities hold:

1. Φ(A)(y∗ ⊗ x) = y∗(Ax) for any x ∈ X and y∗ ∈ Y ∗.

2. If Y = X, then Tr(A) = Φ(A)(I).
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3 Super-diagonal forms for compact operators

In the first two sections, we discussed the approximation property, nuclear
operators and the nuclear trace. We now turn to the eigenvalues of compact
operators and their invariant subspaces. To study these properly, we will
need to introduce so-called nests of invariant closed subspaces, also termed
invariant nests. The goal of this section is to show that compact operators
on complex Banach spaces can be represented in a way very similar to upper
triangular matrices. To prove this, we will follow Ringrose [20], but first
we need some preparatory results. In this section, all subspaces are closed,
unless stated otherwise. Furthermore, a proper subspace is a subspace that
is neither the entire space nor the zero space.

3.1 Lomonosov’s theorem

In studying the invariant subspaces for compact operators, a natural first
question is whether all operators have such invariant subspaces. Of course,
if X is a Banach space and T is a linear operator on X then the zero space
{0} and the entire space are invariant spaces for the operator T . These
are called trivial invariant spaces. The question of whether each linear
operator on a Banach space X has a proper invariant subspace was solved
in the negative by Enflo, who published his proof in 1987 [4]. However,
Aronszajn and Smith proved in 1954 that all compact operators on complex
Banach spaces of dimension at least 2 have proper invariant subspaces [1].
Lomonosov generalised this result in 1973 by proving that each compact
nonscalar operator on a complex Banach space has a proper hyperinvariant
subspace [14]. This result is known as Lomonosov’s theorem and we will
use this to construct invariant nests.

Definition 3.1. LetX be a Banach space and let T be a bounded operator.
A (not necessarily closed) subspace H ⊂ X is a hyperinvariant subspace
for T if it is an invariant subspace for all bounded operators commuting
with T .

Remark. Since any operator certainly commutes with itself, each hyper-
invariant subspace for an operator is an invariant subspace too.

Definition 3.2. Let X be a Banach space. A bounded operator T ∈ B(X)
is a scalar operator if it is a scalar multiple of the identity operator.

Theorem 3.3 (Lomonosov’s theorem). Let X be a complex Banach space
with dim(X) ≥ 2 and let T be a nonscalar compact operator on X. Then
there exists a hyperinvariant proper subspace for T .

Remark. Note that the assumptions in our formulation of Lomonosov’s
theorem differ from those in the formulation given in [16]. The nonzero
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assumption on the compact operator has been replaced with the assump-
tion of being nonscalar. Furthermore, a restriction on the dimension of
the Banach space is added. The restriction on the dimension is due to the
obvious reason that spaces with dimension less than or equal to 1 have
no proper subspaces. Replacing the nonzero assumption by the nonscalar
assumption was done after the author realised that in finite-dimensional
Banach spaces, the nonzero assumption is not strong enough. Surely,
for infinite-dimensional Banach spaces, replacing nonzero with nonscalar
changes nothing as the zero operator is the only compact scalar operator.
However, since scalar operators commute with all linear operators and in
finite-dimensional spaces all linear operators are compact, it is not difficult
to construct counter-examples to Lomonosov’s theorem with the weaker
assumptions. It also turns out there are other sources, like [11, Section 12],
that use the stronger assumptions we found.

The proof we give is due to Hilden [16] and is significantly simpler
than Lomonosov’s original proof, which used the Schauder fixed-point the-
orem. We first need a few preparatory results. Peculiarly, Hilden’s proof
of Lomonosov’s theorem is also much simpler than the original proof of the
weaker result by Aronszajn and Smith. This is why we use the stronger
result.

Proposition 3.4. Let X be a Banach space and T a bounded operator on
X. If M ⊂ X is an invariant (not necessarily closed) subspace for T , then
so is M .

Proof. Let X be a Banach space and T a bounded operator on X. Let
M ⊂ X be an invariant subspace for T and let x ∈ M . We prove that
Tx ∈ M . As x ∈ M , there exists a sequence {xn}n∈N in M such that xn
converges to x as n → ∞. As M is an invariant subspace for T , it follows
that {Txn}n∈N ⊂M . By continuity, it follows that Tx = limn→∞ Txn ∈M .
We conclude that M is an invariant subspace for T .

Other results we will need are the well-known spectral radius formula
and the Fredholm alternative. We will not give proofs, but these can be
found in various textbooks on functional analysis e.g. Megginson [15, The-
orem 3.3.27 + 3.4.24].

Theorem 3.5 (The Spectral Radius Formula). Let X be a complex Banach
space. Then for all bounded operators T ∈ B(X), the spectral radius r(T )
is given by

r(T ) = lim
n→∞

∥T n∥
1
n .

Corollary 3.6. Let X be a complex Banach space. Then for all bounded
operators T ∈ B(X) we have that r(T ) = 0 if and only if limn→∞ ∥(αT )n∥ =
0 for all α ∈ C.
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Proof. Let X be a complex Banach space and let T ∈ B(X) be a bounded
operator. Suppose that r(T ) = limn→∞ ∥T n∥1/n = 0 and let α ∈ C be
an arbitrary scalar. If α = 0, it is obvious that limn→∞ ∥(αT )n∥ = 0. So
suppose that α ̸= 0. Choose a positive real ϵ such that 0 < ϵ < 1. By
definition of the limit, there exists an N ∈ N such that for all n ≥ N we
have that ∥T n∥1/n < ϵ|α|−1. It then follows that for all n ≥ N we have
that ∥(αT )n∥ = |α|n∥T n∥ < ϵn < ϵ. Therefore, limn→∞ ∥(αT )n∥ = 0.

Conversely, suppose that limn→∞ ∥(αT )n∥ = 0 for all α ∈ C. Let
α ∈ C be arbitrary but nonzero. By definition of the limit, there exists
an N ∈ N such that for all n ≥ N we have that |α|n∥T n∥ < 1. This
implies that for all n ≥ N , we have that ∥T n∥1/n < |α|−1. This implies
that lim supn→∞ ∥T n∥1/n ≤ |α|−1. As this applies to all nonzero α ∈ C,
we can make α arbitrarily large, hence lim supn→∞ ∥T n∥1/n ≤ 0. It follows
that

lim sup
n→∞

∥T n∥1/n ≤ 0 ≤ lim inf
n→∞

∥T n∥1/n ≤ lim sup
n→∞

∥T n∥1/n

We can conclude that the limit superior and limit inferior are equal and
equal 0. Hence, r(T ) = limn→∞ ∥T n∥ 1

n = 0.

Theorem 3.7 (The Fredholm Alternative). Let X be a complex Banach
space, let T ∈ K(X) be a compact operator and let α be a nonzero complex
scalar. Then the following are equivalent:

1. αI − T is injective.

2. αI − T is surjective.

3. αI − T is invertible.

Remark. The Fredholm Alternative as stated here is formulated differently
from Megginson [15]. However, Megginson’s formulation implies our for-
mulation. Note that parts a and c in Megginson correspond to our parts 1
and 2. Furthermore, the equivalence of injectivity and surjectivity implies
equivalence with invertibility by the Bounded Inverse Theorem.

Corollary 3.8. Let X be a complex Banach space and let T ∈ K(X) be
a compact operator. Then all nonzero elements of the spectrum σ(T ) are
eigenvalues of T .

With these results established, we can prove Theorem 3.3.

Proof of Theorem 3.3. Let X be a complex Banach space with dim(X) ≥ 2
and let T be a nonscalar compact operator on X. We start with a reduction
step. Suppose that T has a nonzero eigenvalue λ. We claim that the
eigenspace Eλ of this eigenvalue is a proper hyperinvariant subspace for T .
To prove this, let A be a bounded operator such that A and T commute and
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let x ∈ Eλ be an eigenvector of T . It follows that T (Ax) = A(Tx) = λAx,
thus Ax ∈ Eλ. So Eλ is an invariant subspace for A and therefore it is a
hyperinvariant subspace for T . Since T is a nonscalar operator, it follows
that Eλ ̸= X. As Eλ = (T − λI)−1({0}), it follows from continuity of
T − λI that Eλ is closed. Hence Eλ is a hyperinvariant proper subspace.
Furthermore, if T/∥T∥ has a hyperinvariant subspace, then this is also a
hyperinvariant subspace for T . So it suffices to consider compact operators
of norm 1 without nonzero eigenvalues.

Now assume that T has norm 1 and has no nonzero eigenvalues. By
Corollary 3.8, it follows that σ(T ) = {0} and thus that r(T ) = 0. Choose
x0 ∈ X such that ∥Tx0∥ > 1. As ∥T∥ = 1, it follows that ∥x0∥ > 1. Let
B be the closed unit ball centered at x0. It follows that 0 /∈ B and since
∥T∥ = 1, it also follows that 0 /∈ TB. For all y ∈ X, we define

My = {Ay ∈ X : A ∈ B(X), A commutes with T} .

We claim that for all y ∈ X, this is a hyperinvariant subspace for T . To
prove this, fix y ∈ X and choose v, w ∈ My. By definition of My, this
implies there are bounded linear operators C and D, commuting with T ,
such that v = Cy and w = Dy. Since for all α ∈ C the operator αC +D
commutes with T , it follows that αv + w = (αC +D)y ∈My. Thus My is
a linear subspace of X. Furthermore, if C commutes with T and v ∈ My,
we can write v = Dy for some bounded linear operator D commuting with
T . As CD also commutes with T , it follows that Cv = CDy ∈My. So My

is an invariant (but not necessarily closed) subspace for C and therefore a
hyperinvariant (but not necessarily closed) subspace for T . By Proposition
3.4, it follows that My is a hyperinvariant subspace for T for all y ∈ X.

The last step is to prove that there exists a y ∈ X such that My is
a proper subspace of X. Since the identity operator I of X is bounded
and commutes with all operators, it follows that y ∈ My for all y ∈ X.
Therefore, if y ̸= 0 then it follows that My ̸= {0}. We are left with proving
that there exists a y ∈ X \ {0} such that My is not dense in X. We argue
by contradiction. Suppose that for all y ∈ X \ {0} we have that My is
dense in X. Then for all y ∈ X \ {0} it follows that My ∩ B1(x0) ̸= ∅. So
for all y ∈ X, there exists a bounded linear operator A commuting with T
such that ∥Ay − x0∥ < 1. For all A ∈ B(X) commuting with T , we define

U(A) = {y ∈ X : ∥Ay − x0∥ < 1} .

As each nonzero y ∈ X is contained in at least one of these sets by our
previous remark and 0 is certainly contained in none of them as ∥x0∥ > 1,
it follows that the union of all U(A) is equal to X\{0}. Furthermore, as the
function fA : y 7→ ∥Ay − x0∥ is continuous for all A ∈ B(X) and U(A) =
f−1
A ([0, 1)), it follows that U(A) is open for all A commuting with T . Since
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T is compact, TB is a compact subset of X \ {0}. So we can find bounded
operators A1, ..., An commuting with T such that {U(A1), ...,U(An)} forms
a finite cover of TB. Since Tx0 ∈ TB, there exists an i1 ≤ n such that
Tx0 ∈ U(Ai1). By definition of U(Ai1), it follows that Ai1Tx0 ∈ B and thus
TAi1Tx0 ∈ TB, so there exists an i2 ≤ n such that TAi1Tx0 ∈ U(Ai2). By
repeating this argument m times, we can construct a sequence {xm}m∈N
where xm = AimTAim−1 ...Ai1Tx0 = AimAim−1 ...Ai1T

mx0 ∈ B. If we set
c = max1≤i≤n ∥Ai∥, it follows that

∥xm∥ ≤ ∥Aim∥∥Aim−1∥...∥Ai1∥∥Tm∥∥x0∥ ≤ cm∥Tm∥∥x0∥ = ∥(cT )m∥∥x0∥.

Since r(T ) = 0, Corollary 3.6 implies that

lim
m→∞

∥xm∥ ≤ lim
m→∞

∥(cT )m∥∥x0∥ = 0.

This implies that 0 ∈ B = B, which contradicts the definition of B. So
there exists a nonzero y ∈ X such that My is not dense in X.

Corollary 3.9. Let X be a complex Banach space of dimension at least
2 and let T be a compact operator on X. Then T has a proper invariant
subspace.

Proof. We distinguish two cases: T is a scalar operator and T is a non-scalar
operator. If T is a scalar operator, any linear subspace of X is an invariant
subspace for T . So for any one-dimensional subspace K ⊂ X it follows
that K is a proper invariant subspace for T . If T is a nonscalar operator,
Lomonosov’s theorem guarantees the existence of a proper hyperinvariant
subspace H ⊂ X for T . As T certainly commutes with itself, H is a proper
invariant subspace for T .

3.2 Nests of subspaces, simple, maximal and invariant
nests

In the previous subsection, we saw that compact operators on complex
Banach spaces have proper invariant subspaces if the dimension is at least
2. In the coming subsections, we will strengthen this statement vastly. In
this subsection, our main goal is to introduce nests and related concepts,
which allow us to prove Ringrose’s theorems.

Definition 3.10. Let X be a Banach space. A nest N is a set of linear
subspaces of X that is totally ordered by inclusion. If T is a bounded
operator on X and all subspaces L ∈ N are invariant subspaces for T , then
N is an invariant nest for T .
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Proposition 3.11. Let X be a Banach space and let N be a nest of sub-
spaces. Let N0 ⊂ N be a subnest and define

K =
⋂

M∈N0

M , and L =
⋃

M∈N0

M.

Then L and K are subspaces of X and N ∪ {K} and N ∪ {L} are nests
of subspaces. Moreover, if T is a bounded operator and N is an invariant
nest, then so are N ∪ {K} and N ∪ {L}.

Proof. By construction, it follows that L and K are closed subspaces of X.
We need to check whether N ∪ {K} and N ∪ {L} are totally ordered by
inclusion. First, consider N ∪ {K}. As N is a nest, hence totally ordered
by inclusion, we only need to check whether for all N ∈ N we either have
N ⊂ K or K ⊂ N . So let N ∈ N be a subspace. If there exists anM ∈ N0

such that M ⊂ N , then it follows that K ⊂ M ⊂ N . If such M does not
exist, then for all M ∈ N0 we have that N ⊂ M . It follows that N ⊂ K.
We conclude that N ∪{K} is totally ordered by inclusion and thus a nest.
Now consider N ∪{L}. By the same argument as above, we need to verify
whether for all N ∈ N , we either have N ⊂ L or L ⊂ N . So let N ∈ N
be a subspace. If there exists a M ∈ N0 such that N ⊂M , then it follows
that N ⊂ M ⊂ L. If such M does not exist, then for all M ∈ N0 we have
that M ⊂ N . It follows that

⋃
M∈N0

M ⊂ N . As N is closed, this implies
that L ⊂ N . We conclude that N ∪{L} is totally ordered by inclusion and
thus a nest.

Now let T be a bounded operator and suppose that N is an invariant
nest. To prove our last statement, it is only left to show that K and L
are invariant subspaces for T . As N0 ⊂ N is a subnest of an invariant
nest, it follows that TM ⊂ M for all M ∈ N0. Suppose that x ∈ K.
Then x ∈ M for all M ∈ N0 and therefore Tx ∈ M for all M ∈ N0.
It follows that Tx ∈ K, hence K is an invariant subspace for T . Now
suppose that x ∈ L. By definition of L, this implies there exists a sequence
{xn}n∈N in

⋃
M∈N0

M such that xn converges to x as n → ∞. So for all
xn, there exists an M ∈ N0 such that xn ∈ M . As N is an invariant nest,
it follows that Txn ∈ M ⊂ L. Using the continuity of T , it follows that
Tx = limn→∞ Txn ∈ L = L. We conclude that both K and L are invariant
subspaces for T .

Definition 3.12. Let X be a Banach space and let N be a nest of sub-
spaces. For all M ∈ N , we define

M− =
⋃

{L ∈ N : L ⊊M}.

If the set {L ∈ N : L ⊊M} is empty, we put M− = {0}. As M is closed,
it follows that M− ⊂ M . We say that the nest N is continuous at M if
M− =M and that N is continuous if it is continuous at all M ∈ N .
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Proposition 3.13. Let X be a Banach space and let N be a nest of sub-
spaces. Let M ∈ N be a subspace. If there exists a subspace L of X such
that M− ⊂ L ⊂M , then N ∪ {L} is a nest.

Proof. Suppose that there exists a subspace L of X such that M− ⊂ L ⊂
M . We need to check whether N ∪ {L} is totally ordered. Let N ∈ N be
a subspace. We distinguish two cases: M ⊂ N and N ⊊ M . In the first
case, it follows that L ⊂ M ⊂ N , hence it follows that L ⊂ N . In the
second case, we have that N ⊂ M− by definition of M−. It follows that
N ⊂ M− ⊂ L. So we either have L ⊂ N or N ⊂ L, which implies that
N ∪ {L} is a nest.

In Propositions 3.11 and 3.13, we encountered two ways to extend a
nest. This raises the question whether or not there are maximal nests;
nests that cannot be extended any further.

Definition 3.14. Let X be a Banach space. A nest N is maximal if it is
not included in a strictly bigger nest. Furthermore, a nest N is simple if
it satisfies the following three properties:

1. {0} ∈ N and X ∈ N .

2. For all subnests N0 ⊂ N , we have that
⋂

M∈N0
M and

⋃
M∈N0

M are
in N .

3. dim(M/M−) ≤ 1 for all M ∈ N .

A nest N is complete if it satisfies the first two properties of a simple nest.

Remark. If N is a complete nest, then property 2 implies thatM− ∈ N for
all M ∈ N . Moreover, note that any simple nest is complete.

Before we proceed, we could wonder if such maximal nests do exist in
the first place. In Proposition 3.16 we will see they actually do. However,
the proof of this statement is very non-constructive in the sense that it
relies on Zorn’s lemma.

Lemma 3.15. Let X be a Banach space and I a totally ordered index set.
Let {Ni}i∈I be an increasing chain of nests of X. Then N =

⋃
i∈I Ni is a

nest and Ni ⊂ N for all i ∈ I. Moreover, if {Ni}i∈I is an increasing chain
of invariant nests for some operator T on X, then N is also an invariant
nest for that operator.

Proof. We prove that N is a nest of subspaces of X. The second and
third claim then follow trivially. To prove N is a nest, we need to check
whether it is totally ordered with respect to inclusion. Let M,N ∈ N be
two subspaces. By definition of N , there are i, j ∈ I such that M ∈ Ni
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and N ∈ Nj. As {Ni}i∈I is an increasing chain of nests, we either have
Ni ⊂ Nj or Nj ⊂ Ni. Hence, one of the two nests contains both N and M .
As nests are totally ordered, this implies that either N ⊂ M or M ⊂ N
should hold. We conclude that N is totally ordered, hence a nest.

Proposition 3.16. Let X be a Banach space. Then there exists a maximal
nest of subspaces of X. Moreover, if M is a given nest, then there exists a
maximal nest extending M.

Proof. Let X be a Banach space and let F be the set of nests of subspaces
of X. F is nonempty as it certainly contains the trivial nest {{0}, X}. F
is a partially ordered set with respect to inclusion. Furthermore, if F0 ⊂ F
is a increasing chain of nests, then by Lemma 3.15, N0 =

⋃
N∈F0

N is an
upper bound of F0 in F . This implies that every increasing chain of nests
in F has an upper bound in F with respect to inclusion. Hence by Zorn’s
Lemma, there exists a maximal nest Nmax in F .

Now suppose that M is a given nest and let F(M) be the set of nests
containing M. F(M) is nonempty as M ∈ F(M). The same argument as
before now gives that F(M) has a maximal element Mmax. We claim that
Mmax is also maximal in F . Suppose it is not, then there exists a nestM′ in
F such thatMmax ⊊ M′. However, as this implies thatM ⊂ Mmax ⊊ M′,
it follows that M′ extends Mmax in F(M), contradicting the maximality
of Mmax.

We will study the connection between maximal and simple nests; they
will turn out to be the same thing. However, as property 3 of simple nests
suggests, we will need some properties of quotient spaces for this. We will
quickly revisit some standard results and some preparatory results we need.

If X is a vector space and M ⊂ X is a linear subspace, then M defines
an equivalence relation ∼M on X via x ∼M y if and only if x − y ∈ M .
With this definition, the quotient space X/M := X/ ∼M has a vector space
structure if we define α(x+M) = αx+M and (x+M)+(y+M) = (x+y)+M
[15, p. 50]. With these definitions, the quotient map p : X → X/M defined
by p(x) = x+M is a linear map. If X is a normed space and M is a closed
subspace, then ∥x +M∥ = infy∈M ∥x − y∥ defines a norm on X/M [15,
Theorem 1.7.4] and the quotient map p is a bounded linear operator with
∥p∥ = 1 if M ̸= X [15, Proposition 1.7.12]. We also have that p maps the
open unit ball of X onto the open unit ball of X/M [15, Lemma 1.7.11].
Furthermore, if two of the three spaces X,M and X/M are complete, then
so is third [15, Theorem 1.7.9].

Proposition 3.17. Let X be a vector space and M ⊂ X a subspace. Let
p : X → X/M be the quotient map and let K ⊂ X/M be a subspace of the
quotient space. Then p−1(K) ⊂ X is a linear subspace.
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Proof. Choose x, y ∈ p−1(K) and let α be a scalar. Then x+M ∈ K and
y +M ∈ K, hence αx + y +M ∈ K as K is a linear space. We conclude
that p(αx+y) ∈ K, hence αx+y ∈ p−1(K). So p−1(K) is a linear subspace
of X.

Proposition 3.18. Let X be a vector space and suppose that M ⊊ N ⊂
X are two subspaces. Then dim(N/M) > 1 if and only if there exists a
subspace L such that M ⊊ L ⊊ N . Moreover, if X is a normed space and
M and N are closed, L can also be chosen to be closed.

Proof. Let X be a vector space and suppose thatM ⊊ N ⊂ X are two sub-
spaces. Suppose that dim(N/M) > 1. Then there exists a one-dimensional
subspace K ⊊ N/M . Let p : N → N/M be the quotient map restricted
to N . Set L = p−1(K) ⊂ X. By Proposition 3.17, L is a linear subspace
of N , hence of X. As dim(K) = 1, it follows that {0} ⊊ K. Combined
with surjectivity of p, this yields that M ⊊ L. As we also have that
K ⊊ N/M , using surjectivity of p again yields that L ⊊ N . We conclude
that M ⊊ L ⊊ N . If X is a normed space, closedness of L follows from the
fact that K is closed as it is finite-dimensional, hence by continuity of p it
follows that L is closed in N . As N is closed in X it also follows that L is
closed in X.

Conversely, if there exists a subspace L such that M ⊊ L ⊊ N , then
p(L) is a linear subspace of N/M such that {0} ⊊ p(L) ⊊ N/M . Hence
dim(N/M) > dim(p(L)) ≥ 1.

Proposition 3.19. Let X be a Banach space and let T be a bounded
operator on X. Let M ⊂ X be an invariant subspace for T . Then
there exists a well-defined bounded linear operator TM on X/M such that
TM ◦ p = p ◦ T . Moreover, if T is compact, then so is TM .

Proof. Define TM : X/M → X/M by TM(x+M) = Tx+M . We first need
to verify that TM is well-defined. Suppose that x, x′ ∈ X with x +M =
x′ +M , hence x− x′ ∈M . As M is an invariant subspace for T , it follows
that Tx− Tx′ = T (x− x′) ∈M , hence Tx+M = Tx′ +M . We conclude
that TM(x +M) = Tx +M = Tx′ +M = TM(x′ +M), hence TM is well-
defined. By definition of p, it directly follows that TM ◦ p = p ◦ T . For
linearity of TM , let α be a scalar and let x+M, y +M ∈ X/M . Then

TM(α(x+M) + (y +M)) = TM(αx+ y +M)

= T (αx+ y) +M

= αTx+ Ty +M

= αTM(x+M) + TM(y +M),

hence TM is linear. To prove that TM is bounded, we calculate the operator
norm. For this, we need the fact that the quotient map p maps the open
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ball Br(0) in X onto the open ball B′
r(0) in X/M . Let ϵ > 0. It follows

that

∥TM∥ = sup
∥x+M∥≤1

∥TM(x+M)∥ ≤ sup
∥x+M∥<1+ϵ

∥TM(x+M)∥

= sup
∥x∥<1+ϵ

∥TM(p(x))∥ = sup
∥x∥<1+ϵ

∥p(Tx))∥

≤ ∥p∥∥T∥(1 + ϵ),

where ∥p∥ is equal to 0 or 1 depending on whether M = X or M ̸= X. As
this holds for all ϵ > 0, it follows that ∥TM∥ ≤ ∥p∥∥T∥ = ∥T∥ unless p = 0.
Hence TM is a well-defined bounded linear operator on X/M .

Now suppose that T is a compact operator. To prove that TM is compact
too, we show that for each bounded sequence {xn +M}n∈N in X/M , the
sequence {TM(xn+M)}n∈N has a convergent subsequence. Let {xn+M}n∈N
be a bounded sequence in X/M . By definition of the quotient norm, we can
find a sequence {yn}n∈N inM such that ∥xn−yn∥ < ∥xn+M∥+1. It follows
that {xn−yn}n∈N is a bounded sequence in X. As T is a compact operator,
p ◦ T = TM ◦ p is also compact. It follows that {TM ◦ p(xn − yn)}n∈N =
{TM(xn+M)}n∈N has a convergent subsequence. So TM is compact too.

These intermediate results allow us to prove that maximal and simple
nests are the same. To prove this, we follow Ringrose [20].

Theorem 3.20 ([20, Lemma 1]). Let X be a Banach space. A nest of
subspaces of X is maximal if and only if it is simple.

Proof. Let X be a Banach space and let N be a nest of subspaces. Suppose
thatN is maximal. We check thatN satisfies the three properties of simple
nests. It is obvious that we have {0} ∈ N and X ∈ N , otherwise N could
have been extended by adding {0} or X, contradicting the maximality. By
the same argument it follows that N must also satisfy the second property
of simple nests. Suppose it does not. Then there exists a subnest N0 ⊂ N
such that

⋂
M∈N0

M or
⋃

M∈N0
M is not in N . By Proposition 3.11, it

follows that we can extend N , contradicting the maximality. So N satisfies
the first two properties of simple nests. For the third, suppose there exists
a M ∈ N such that dim(M/M−) > 1. By Proposition 3.18, it follows
there exists a subspace L such that M− ⊊ L ⊊ M . Hence by Proposition
3.13, we can extend N by L, contradicting the maximality of N again. So
dim(M/M−) ≤ 1 for all M ∈ N and therefore N is simple.

Conversely, suppose that N is simple but not maximal. This implies
there exists a subspace L of X such that L /∈ N and N ∪ {L} is a nest.
Define

M =
⋂

{N ∈ N : L ⊂ N} and M ′ =
⋃

{N ∈ N : N ⊊ L}.
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Note that both M and M ′ are well-defined as both sets {N ∈ N : L ⊂ N}
and {N ∈ N : N ⊊ L} are nonempty since {{0}, X} ⊂ N by the first
property of simple nests. By the second property of simple nests, it follows
that M,M ′ ∈ N and by construction it follows that M ′ ⊊ L ⊊ M . The
inclusions must be strict as L /∈ N . We claim thatM ′ =M−. The inclusion
M ′ ⊂M− follows from the fact that N ⊊ L implies that N ⊊M . Hence

M ′ =
⋃

{N ∈ N : N ⊊ L} ⊂
⋃

{N ∈ N : N ⊊M} =M−.

Conversely, suppose that N ∈ N and N ⊊ M . As L ⊂ N implies that
M ⊂ N , it follows from contraposition that N ⊊M implies N ⊊ L, hence

M− =
⋃

{N ∈ N : N ⊊M} ⊂
⋃

{N ∈ N : N ⊊ L} =M ′.

It follows that M ′ = M− and thus we have that M− ⊊ L ⊊ M . By
Proposition 3.18, it follows that dim(M/M−) > 1, contradicting the third
property of simple nests. Hence N must be maximal.

Combining Proposition 3.16 with Theorem 3.20, we can conclude that
maximal nests exist in each Banach space X and that we know quite some
things about the properties they should have. For our study of the eigen-
values of compact operators, simple nests of invariant subspaces will turn
out to be useful. The reason for this might not be obvious at all and is hard
to explain with the current results. A detailed explanation will be given in
the next subsection. However, before we proceed we should clarify whether
such simple nests of invariant subspaces exist. This will be discussed in the
next theorem, which is also due to Ringrose [20].

Theorem 3.21 ([20, Theorem 1]). Let X be a complex Banach space and
let T be a compact operator on X. Then there exists a simple nest of
invariant subspaces for T .

Proof. Let X be a complex Banach space and let T be a compact operator
on X. Let FT be the set of all invariant nests for T . FT is nonempty as
it contains the trivial nest {{0}, X} since both {0} and X are invariant
subspaces for T . FT is a partially ordered set with respect to inclusion.
Furthermore, if F0 ⊂ FT is a increasing chain of nests, then by Lemma
3.15 it follows that N0 =

⋃
N∈F0

N is an upper bound of F0 in FT . This
implies that every increasing chain of nests in FT has an upper bound in
FT with respect to inclusion. By invoking Zorn’s Lemma, there exists a
maximal nest Nmax in FT .

We claim that Nmax is simple. We prove this by verifying the three
properties of simple nests separately. As {0} and X are certainly invariant
subspaces for T , and we can extend any nest by both of them, it directly
follows that Nmax should contain both {0} and X and thus satisfies the
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first property of simple nests. Let N0 ⊂ Nmax be a subnest of invariant
subspaces for T . Define

K =
⋂

M∈N0

M , and L =
⋃

M∈N0

M.

By Proposition 3.11, it follows that Nmax ∪ {K} and Nmax ∪ {L} are in-
variant nests too. Hence by maximality of Nmax it follows that L,K ∈
Nmax. So Nmax also satisfies the second property of simple nests. It is
left to prove that for all N ∈ Nmax, we have that dim(N/N−) ≤ 1. We
argue by contradiction. Suppose that there exists an N ∈ Nmax such that
dim(N/N−) > 1. As N is a closed subspace of X, it follows that N is a
Banach space. Furthermore, as N is an invariant subspace for T , we can
restrict the map T to N and view T : N → N as a compact linear map
on the Banach space N . By Proposition 3.11, it follows that N− ⊂ N is
an invariant subspace for the restriction of T to N . Using Proposition 3.19
with X = N and M = N−, we obtain a compact linear operator TN on
N/N− such that TN ◦ p = p ◦ T where p : N → N/N− is the quotient map.
Since dim(N/N−) > 1, Corollary 3.9 guarantees there exists a proper sub-
space LN ⊂ N/N− that is invariant under TN . Define L = p−1(LN). Then
by Proposition 3.17 and by continuity of p, it follows that L is a closed
subspace of N and hence of X. Furthermore, since {0} ⊊ LN ⊊ N/N− and
p is surjective, it follows that N− ⊊ L ⊊ N .

To get our contradiction, we show that Nmax ∪{L} is an invariant nest
for T , contradicting the maximality of Nmax. By Proposition 3.13 and the
fact that N− ⊊ L ⊊ N , it follows that Nmax ∪ {L} is a nest of subspaces.
To prove that Nmax ∪ {L} is an invariant nest, it is left to prove that L is
an invariant subspace for T . Let x ∈ L be arbitrary. By definition of L, it
follows that p(x) ∈ LN and hence that TN ◦p(x) ∈ LN as LN is an invariant
subspace for TN . Using Proposition 3.19, it follows that p ◦T (x) ∈ LN and
therefore that T (x) ∈ p−1(LN) = L. Hence L is an invariant subspace for
T .

3.3 Diagonal coefficients and eigenvalues of compact
operators on complex Banach spaces

In the previous section, we saw that if T is a compact operator on a complex
Banach space X, there exists a simple nest of invariant subspaces for that
operator T (Theorem 3.21). We will use this to study the eigenvalues of
these compact operators. As we will need the existence of simple invariant
nests, we will from now on assume that all Banach spaces are complex.

If X is a vector space and L ⊂ X has codimension 1, it follows from
linear algebra that for all x ∈ X \ L the vector spaces X and Cx ⊕ L
are isomorphic, with Φ : Cx ⊕ L → X defined by (αx, y) 7→ αx + y as
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linear isomorphism. Let X be a Banach space, T a compact operator on
X and N a maximal invariant nest for T . It follows that for all M ∈ N
with dim(M/M−) = 1 and for all x ∈ M \M− the vector spaces M and
Cx⊕M− are isomorphic. Note that by the Bounded Inverse Theorem, this
is also an isomorphism of Banach spaces. Since M is an invariant subspace
for T , we have that Tx ∈ M . It follows that for all x ∈ M \M− there
exists a unique αx ∈ C and yx ∈M− such that Tx = αxx+ yx.

Proposition 3.22. Let X be a Banach space, T a compact operator on
X and N a maximal invariant nest for T . Let M ∈ N be an invariant
subspace for T such that dim(M/M−) = 1. For x, x′ ∈ M \ M−, write
Tx = αxx+ yx and Tx′ = αx′x′ + yx′ with yx, yx′ ∈M−. Then αx = αx′.

Proof. Let x, x′ ∈M \M− and let p be the quotient map fromM toM/M−.
It follows that p(x), p(x′) ̸= 0. As dim(M/M−) = 1, there exists a nonzero
γ ∈ C such that p(x) − γp(x′) = p(x − γx′) = 0. So x − γx′ ∈ M− and
as M− is an invariant subspace for T by Proposition 3.11, it follows that
T (x− γx′) ∈M−. So it follows that

p ◦ T (x− γx′) = p(αxx+ yx − γ(αx′x′ + yx′)) = 0.

Rewriting yields that αxp(x)−γαx′p(x′) = (αx−αx′)p(x) = 0. As p(x) ̸= 0,
it follows that αx = αx′ .

Corollary 3.23. Let X be a Banach space, T a compact operator on X
and N a maximal invariant nest for T . Then for all M ∈ N there exists
a complex scalar αM such that for all x ∈ M there exists a y ∈ M− such
that Tx = αMx + y. Moreover, if dim(M/M−) = 1, this αM is uniquely
defined.

Proof. We distinguish two cases: dim(M/M−) = 0 and dim(M/M−) = 1.
If dim(M/M−) = 0, put αM = 0. AsM =M−, it follows that for all x ∈M
we have that Tx ∈ M = M−. Hence Tx = 0x + Tx, with Tx ∈ M−. So
αM = 0 works.

If dim(M/M−) = 1, pick x ∈ M \ M− and define αM = αx. By
Proposition 3.22, it follows that for all x′ ∈M \M−, there exists a y ∈M−
such that Tx′ = αMx + y. Now suppose that x ∈ M−. This implies that
Tx ∈M− asM− is an invariant subspace for T , hence Tx−αMx ∈M−. So
there exists a y ∈ M− such that Tx = αMx + y. We conclude that for all
x ∈M there exists a y ∈M− such that Tx = αMx+ y. Uniqueness of αM

follows from the fact that αx is uniquely determined for all x ∈ M \M−
since M is isomorphic to Cx⊕M−.

Definition 3.24. Let X be a Banach space, T a compact operator on X
and N a maximal invariant nest for T . For all M ∈ N the complex scalar
αM as constructed in the proof of Corollary 3.23 is the diagonal coefficient
of T at M .
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Remark. Note that if αM ̸= 0, it follows that dim(M/M−) = 1. Further-
more, note that from Corollary 3.23 it follows that the scalars αM behave
somewhat like the diagonal coefficients of an upper triangular matrix. To
illustrate this, consider the vector space Cn for some natural number n ∈ N.
Let B = {ek : 1 ≤ k ≤ n} be the standard basis of Cn and define the sub-
spaces Ek = span(e1, ..., ek). It follows that N = {{0}, E1, ..., En−1,Cn} is
a maximal nest of subspaces. Let A ∈ Mn×n(C) be an upper triangular
matrix, so A = {aij}ni,j=1 with aij = 0 if i > j. Let k ≤ n and let x ∈ Ek

be an arbitrary vector. It follows that there are scalars {xj}kj=1 such that

we can write x =
∑k

j=1 xjej. If we let A act on x as matrix, we see that

Ax = A

(
k∑

j=1

xjej

)
=

k∑
j=1

xjAej =
k∑

j=1

xj

j∑
l=1

aljel =
k∑

j=1

j∑
l=1

xjaljel

=
k∑

l=1

k∑
j=l

xjaljel =
k∑

l=1

el

k∑
j=l

xjalj = akkxkek +
k−1∑
l=1

el

k∑
j=l

xjalj

= akkx+
k−1∑
l=1

el

(
−akkxl +

k∑
j=l

xjalj

)
.

As the last term lies in Ek−1, it follows that for all x ∈ Ek, there exists
a y ∈ Ek−1 such that Ax = akkx + y, where akk is the k-th diagonal
coefficient of the matrix A. Note that this is precisely the sort of equation
as in Corollary 3.23 with αEk

= akk and M− = Ek−1 = Ek−. This explains
why the scalars αM are called diagonal coefficients. It also follows that
N is an invariant nest for A and we know that the diagonal coefficients
{aii}ni=1 are precisely the eigenvalues of A. This also explains why we expect
invariant nests and diagonal coefficients to be important when studying the
eigenvalues of compact operators.

To state the theorem that will be our main goal of this section, we need
some more definitions and lemmas. We begin with the following well-known
lemma from F. Riesz, the proof of which can be found in Megginson.

Lemma 3.25 (Riesz’ Lemma [15, Lemma 3.4.18]). Let V be a normed
space and let W ⊊ V be a proper closed subspace. Let θ ∈ (0, 1). Then
there exists a unit vector x ∈ V such that ∥x− y∥ ≥ θ for all y ∈ W .

Lemma 3.26 ([20, Lemma 2]). Let X be a Banach space, T a compact
operator on X, N a simple invariant nest for T and ϵ > 0. Define N0 ⊂ N
by

N0 = {M ∈ N : |αM | ≥ ϵ} .

Then N0 contains only finitely many invariant subspaces for T .
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Proof. We will argue by contradiction. Suppose that N0 is infinite. As
αM ̸= 0 for all M ∈ N0, it follows that dim(M/M−) = 1 for all M ∈ N0.
Hence M is a normed space and M− ⊂ M is a proper closed subspace for
all M ∈ N0. Let M ∈ N0 be an arbitrary subspace. Using Riesz’ Lemma,
we can find a unit vector zM ∈M such that ∥zM − y∥ ≥ 1

2
for all y ∈M−.

As N0 is infinite, we can extract a strictly increasing sequence {Mn}n∈N
from N0. As all zM are unit vectors, the sequence {zMn}n∈N is bounded.
We claim that the sequence {TzMn}n∈N has no convergent subsequence,
contradicting the compactness of T . Suppose that k, l ∈ N and that k ̸= l.
As N0 is a nest, we either have Mk ⊊ Ml or Ml ⊊ Mk, depending on
whether k ≤ l or l ≤ k. Without loss of generality, we can assume that
Mk ⊊ Ml. In particular, it follows that Mk ⊂ Ml−. As Mk is an invariant
subspace for T , it follows that TzMk

∈ Mk ⊂ Ml−. By Corollary 3.23, it
follows that there exists a yMl

∈Ml− such that TzMl
= αMl

zMl
+yMl

. From
this, it follows that

∥TzMl
− TzMk

∥ = ∥αMl
zMl

+ yMl
− TzMk

∥
= |αMl

|∥zMl
+ α−1

Ml
(yMl

− TzMk
)∥

≥ ϵ∥zMl
+ α−1

Ml
(yMl

− TzMk
)∥ ≥ 1

2
ϵ,

where the last inequality follows from the fact that α−1
Ml
(yMl

− TzMk
) ∈

Ml−. Hence {TzMn}n∈N has no convergent subsequence, contradicting our
assumption that T is compact. So N0 must be finite.

Definition 3.27. Let X be a Banach space, T a compact operator on X
and N a maximal invariant nest for T . For a scalar α ∈ C, we define the
diagonal multiplicity dα to be the number of subspaces M ∈ N such that
αM = α, where we allow dα = ∞.

Corollary 3.28. Let X be a Banach space, T a compact operator on X
and N a maximal invariant nest for T . Then every nonzero scalar α ∈ C
has a finite diagonal multiplicity.

Proof. For all nonzero α ∈ C, there exists an ϵ > 0 such that ϵ < |α|. The
statement now follows directly from Lemma 3.26.

The main goal of this section will be to connect the nonzero eigenvalues
of a compact operator to its diagonal coefficients. To do this properly, we
first need to discuss the multiplicity of eigenvalues. In linear algebra, if
we have a linear operator T acting on a finite-dimensional space and an
eigenvalue λ, we define the geometric multiplicity of λ to be the dimension
of the corresponding eigenspace and we define the algebraic multiplicity to
be the dimension of the corresponding generalized eigenspace. However,
when we try to generalize these definitions to arbitrary linear operators
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on possibly infinite dimensional spaces, some caution is required as these
quantities may be infinite. We will see, however, that for compact operators
these definitions always make sense and are finite. We will cite some results
without giving proof, these are due to Zaanen [23].

Definition 3.29. Let T be a compact operator on a Banach space X. Let
λ be a nonzero scalar. For all natural numbers n, we define the subspaces
Mn = ker((T − λI)n) and Ln = (T − λI)nX.

Remark. It is obvious that using the definition above, the sequence {Mn}n∈N
is an increasing sequence of closed subspaces of X and that {Ln}n∈N is a
decreasing sequence of subspaces of X. Theorem 2 from Zaanen [23, p. 332]
guarantees that Ln is also a closed subspace of X for all natural numbers
n. Furthermore, using the binomial expansion, (T − λI)n can be writ-
ten as Sn + (−λ)nI for some compact operator Sn. It follows that Mn is
the eigenspace of the compact operator Sn corresponding to the eigenvalue
−(−λ)n. Therefore Mn is finite-dimensional for all n ∈ N.

Definition 3.30. Let X be a Banach space and let T be a compact
operator on X. Let λ be a nonzero scalar and let {Mn}n∈N be the sequence
of subspaces from Definition 3.29. We define the geometric multiplicity of
λ as dim(M1) and the algebraic multiplicity of λ as dim

(⋃
n∈NMn

)
.

So far, we have not done much. The multiplicities defined in Definition
3.30 are just straightforward generalizations of the standard definitions in
linear algebra. By construction, it is clear that the geometric multiplicity
is finite for any nonzero scalar. However, we are primarily interested in the
algebraic multiplicities of nonzero scalars and it is not at all obvious from
the definition that these should be finite. The following two theorems from
Zaanen show how the two sequences from Definition 3.29 are connected
and that the algebraic multiplicity is indeed finite for any nonzero scalar.

Theorem 3.31 ([23, Theorem 6 + 7, p. 334 - 336]). Let X be a Banach
space and let T be a compact operator on X. Let λ be a nonzero scalar and
let {Mn}n∈N and {Ln}n∈N be the sequences of subspaces from Definition
3.29. Then there exists a natural number ν = ν(λ) such that Mn = Mν

and Ln = Lν for all n ≥ ν, whereas Mn is proper subspace of Mn+1 and
Ln+1 is proper subspace of Ln for n < ν.

Definition 3.32. Let X be a Banach space and let T be a compact
operator on X. Let λ be a nonzero scalar and let {Mn}n∈N and {Ln}n∈N be
the sequences of subspaces from Definition 3.29. Then the natural number
ν = ν(λ) from Theorem 3.31 is the index of λ relative to T .

Corollary 3.33. Let X be a Banach space and let T be a compact operator
on X. Then any nonzero scalar λ has finite algebraic multiplicity.
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Proof. Let {Mn}n∈N be the sequence of subspaces from Definition 3.29 and
let ν be the index of λ relative to T . It follows directly from Theorem 3.31
that dim

(⋃
n∈NMn

)
= dim(Mν) < ∞. Hence the algebraic multiplicity of

λ is indeed finite.

Theorem 3.34 ([23, Theorem 8, p. 336]). Let X be a Banach space and let
T be a compact operator on X. Let λ be a nonzero scalar and let {Mn}n∈N
and {Ln}n∈N be the sequences of subspaces from Definition 3.29. Let ν be
the index of λ relative to T . Then the Banach spaces X and Lν ⊕Mν are
isomorphic.

Our main goal in this section will be to prove the following Theorem,
which is also due to Ringrose. It connects the nonzero diagonal coefficients
of a compact operator to its nonzero eigenvalues.

Theorem 3.35 ([20, Theorem 2]). Let X be a complex Banach space, T a
compact operator on X and N a simple invariant nest for T . Then:

1. A nonzero scalar λ ∈ C is an eigenvalue of T if and only if it is a
diagonal coefficient of T .

2. The diagonal multiplicity of a nonzero scalar λ ∈ C is equal to its
algebraic multiplicity as an eigenvalue of T .

3. T is quasi-nilpotent if and only if αM = 0 for all M ∈ N .

By combining the third statement of Theorem 3.35 with Corollary 3.23,
we get the following result.

Corollary 3.36. Let X be a complex Banach space, T a compact operator
on X and N a simple invariant nest for T . Then T is quasi-nilpotent if
and only if TM ⊂M− for all M ∈ N .

The proof of Theorem 3.35 will primarily be divided into a few proposi-
tions. We will start by showing that each nonzero diagonal coefficient is an
eigenvalue. Then we prove the converse statement, which is significantly
more work. Together, these prove the first point of Theorem 3.35. Then
we prove the second statement. The third statement then easily follows
from the first.

Proposition 3.37 ([20, Lemma 5]). Let X be a Banach space, T a compact
operator on X and N a simple invariant nest for T . Let M ∈ N be
arbitrary. If αM ̸= 0, then αM is an eigenvalue of T .

Proof. Suppose that αM ̸= 0. As αM ̸= 0, it follows that dim(M/M−) = 1.
As M is an invariant subspace for T , we can consider the restriction T ′ of
T to M . By Corollary 3.23, it follows that (T ′ − αMIM)M ⊂ M− ⊊ M .
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Hence T ′ −αMIM is not surjective. As T ′ :M →M is a compact operator
on the complex Banach spaceM and αM is a nonzero scalar, it follows from
the Fredholm alternative (Theorem 3.7) that T ′ − αMIM has a nontrivial
kernel. Hence αM is an eigenvalue of T ′. As T ′ is a restriction of T , this
implies that αM is an eigenvalue of T .

Lemma 3.38. Let C be a compact topological space, I a totally ordered
indexing set and let {Si}i∈I be an increasing or decreasing filtration of
nonempty closed subsets of C. Then

⋂
i∈I Si is nonempty.

Proof. Suppose
⋂

i∈I Si is empty, then by using one of De Morgan’s laws,
we get that

C = C \
⋂
i∈I

Si =
⋃
i∈I

C \ Si.

We see that {C \ Si}i∈I is a cover of open sets of C. As C is compact, this
implies there exists a finite subset {i1, ..., iN} ⊂ I, such that

C =
N⋃
k=1

C \ Sik = C \
N⋂
k=1

Sik .

From this we can conclude that
⋂N

k=1 Sik = ∅. However, as {Si}i∈I is
an increasing or decreasing filtration, there exists an integer j such that
1 ≤ j ≤ N and Sij =

⋂N
k=1 Sik = ∅, which is a contradiction.

Proposition 3.39 ([20, Lemma 3]). Let X be a Banach space, T a compact
operator on X and N a simple invariant nest for T . Let M ∈ N be an
invariant subspace for T and let δ > 0. Then there exists a subspace L ∈ N
such that L ⊊M and such that for all x ∈M− we have that

∥Tx+ L∥L ≤ δ∥x∥,

where ∥ · ∥L is the quotient norm on X/L.

Proof. We distinguish two cases: dim(M/M−) = 1 and dim(M/M−) = 0.
If dim(M/M−) = 1, then set L =M−. As M− is an invariant subspace for
T , it follows that ∥Tx+M−∥M− = ∥0+M−∥M− = 0 ≤ δ∥x∥ for all x ∈M−.

Now suppose that dim(M/M−) = 0. We argue by contradiction, so
suppose that such L does not exist. Define

N0 = {L ∈ N : L ⊊M}.

By assumption it follows that for all L ∈ N0, there exists an x ∈M− such
that ∥Tx + L∥L > δ∥x∥. As this clearly does not hold for x = 0, we can
divide by ∥x∥ to obtain a unit vector x′ ∈ M− such that ∥Tx′ + L∥L > δ.
So the set

SL = {x ∈M− : ∥x∥ = 1, ∥Tx+ L∥L > δ}
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is nonempty for all L ∈ N0. We claim that the filtration {SL}L∈N0 is
decreasing. Let K,N ∈ N0 and suppose that K ⊂ N . Let y ∈ X be
arbitrary, by definition of the quotient norm, it follows that

∥y +K∥K = inf
z∈K

∥y − z∥ ≥ inf
z∈N

∥y − z∥ = ∥y +N∥N .

So if x ∈ SN , then ∥x∥ = 1 and ∥Tx + N∥N > δ, hence ∥Tx + K∥K ≥
∥Tx + N∥N > δ. Therefore it follows that x ∈ SK and thus we have that
SN ⊂ SK . It follows that {SL}L∈N0 is indeed decreasing. Let S be the
unit sphere in X, then by definition of SL, it follows that SL ⊂ S for all
L ∈ N0. As S is bounded, the set C = TS is compact by compactness
of T . Furthermore, {TSL}L∈N0 is a decreasing filtration in TS and hence
{TSL}L∈N0 is a decreasing filtration of closed sets in C. By Lemma 3.38, it
follows that

⋂
L∈N0

TSL is nonempty. So there exists an x0 ∈ X such that

x0 ∈
⋂

L∈N0
TSL ⊂M−.

Let L ∈ N0 be arbitrary. It follows that x0 ∈ TSL, hence there exists
a sequence {xn}n∈N in SL such that {Txn}n∈N converges to x0 as n → ∞.
As xn ∈ SL for all n ∈ N, it follows that ∥Txn + L∥L > δ for all n ∈ N.
By taking the limit as n → ∞, it follows that ∥x0 + L∥L ≥ δ. So we have
that ∥x0 +L∥L ≥ δ for all L ∈ N0. As x0 ∈M− =

⋃
L∈N0

L, there must be
a sequence {yn}n∈N in

⋃
L∈N0

L converging to x0. In particular, there must
exist an L ∈ N0 and a y ∈ L such that ∥x0 − y∥ < δ, contradicting that
∥x0 + L∥L ≥ δ for all L ∈ N0.

Proposition 3.40 ([20, Lemma 4]). Let X be a Banach space, T a compact
operator on X and N a simple invariant nest for T . Let λ ∈ C be a nonzero
eigenvalue of T and x ∈ X be a corresponding nonzero eigenvector. Let

N0 = {L ∈ N : x ∈ L}

and define M =
⋂

L∈N0
L. Then M ∈ N , dim(M/M−) = 1 and αM = λ.

Proof. The fact that M ∈ N follows directly from the second property of
simple nests. We first prove that dim(M/M−) = 1. We argue by contra-
diction. Suppose that dim(M/M−) = 0, henceM =M−. Let 0 < δ < 1

2
|λ|.

Then by Proposition 3.39, there exists a subspace L ∈ N such that L ⊊M
and ∥Tz + L∥L ≤ δ∥z∥ for all z ∈ M−. As L ⊊ M , it follows that x /∈ L.
This implies that Cx ∩ L = {0}, hence we can view K = Cx ⊕ L as a
subspace of X. K is a normed space and L ⊂ K is a closed subspace of
codimension 1. Using Riesz’ lemma, there exists a unit vector y′ ∈ K such
that ∥y′ − z∥ ≥ 2

3
for all z ∈ L. As dim(K/L) = 1 and x, y′ /∈ L, there

exists a nonzero γ ∈ C such that x− γy′ ∈ L. Let y = γy′. Then it follows
that ∥y+L∥L = |γ|∥y′+L∥L ≥ 2

3
|γ| = 2

3
∥y∥. Hence y ∈ X is a vector such

that x− y ∈ L and ∥y∥ ≤ 3
2
∥y+L∥L < 2∥y+L∥L = 2∥x+L∥L. As L is an
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invariant subspace for T , it follows that Tx − Ty ∈ L. Therefore, we also
have

Ty − λy = Tx− λx+ (Ty − Tx− λy + λx)

= Ty − Tx− λ(y − x) ∈ L,

hence Ty + L = λ(y + L). It follows that

∥Ty + L∥L = |λ|∥y + L∥L >
1

2
|λ|∥y∥ > δ∥y∥.

However, as y ∈ M = M−, this contradicts the assumption on L that
∥Tz + L∥L ≤ δ∥z∥ for all z ∈ M−. Therefore it must be the case that
dim(M/M−) = 1.

As dim(M/M−) = 1 implies that M− ⊊M , it follows that x /∈M−. So
M = Cx ⊕M− as vector space. This implies that λx = Tx = αMx + yx
for some yx ∈ M−. As M = Cx ⊕M−, it directly follows that yx = 0 and
αM = λ, which completes the proof.

Lemma 3.41. Let V be a vector space over F and let d ∈ N be such that
d < dim(V ). Suppose that we have d linear functionals {φi}di=1. Then⋂d

i=1 ker(φi) ̸= {0}.

Proof. We argue by contradiction, so suppose that
⋂d

i=1 ker(φi) = {0}. Let
the linear map Φ : V → Fd be defined by Φ(x) = (φ1(x), . . . , φd(x)). By
assumption, it follows that Φ is injective. Define W = Φ(V ) ⊂ Fd. As Φ is
injective, it follows that W ≃ V and therefore that dim(V ) = dim(W ) ≤
dim(Fd) = d, contradicting dim(V ) > d.

Proposition 3.42 ([20, Lemma 6]). Let X be a Banach space, T a compact
operator on X and N a simple invariant nest for T . Let λ ∈ C be a
nonzero scalar. Then the diagonal multiplicity of λ is equal to its algebraic
multiplicity as an eigenvalue of T .

Proof. Let d be the diagonal multiplicity of λ, m the algebraic multiplicity
of λ and let ν be the index of λ relative to T . If ν = 0, then λ is not an
eigenvalue of T and therefore by Proposition 3.37, it also follows that λ is
not a diagonal coefficient. Hence m = 0 = d. Now suppose that ν ̸= 0. We
start with a reduction step. We claim that it suffices to prove the lemma
for ν = 1. So suppose the result is true for ν = 1. As T and I commute,
we can use the binomial theorem to expand (T − λI)ν = S − µI where
µ = −(−λ)ν and S is a compact operator, a polynomial in T . As λ is an
eigenvalue of T , it follows that (T −λI)ν = S−µI has a non trivial kernel.
So µ is a nonzero eigenvalue of S. Furthermore, we have that

ker((S − µI)2) = ker((T − λI)2ν) = ker((T − λI)ν) = ker(S − µI).
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Hence the index of µ relative to S equals 1 and the algebraic multiplicity
of µ is also equal to m. As S is a polynomial in T , all spaces M ∈ N are
also invariant subspaces for S. This implies that we can define the diagonal
coefficients {σM}M∈N of S according to Definition 3.24. By definition of the
diagonal coefficients {αM}M∈N of T , it follows that for all M ∈ N and for
all x ∈M \M− we have that (T −λI)x = (αM −λ)x+y1 with y1 ∈M−. As
M− is also an invariant subspace for T −λI, it follows by induction that for
all n ∈ N, there exists a yn ∈M− such that (T −λI)nx = (αM −λ)nx+ yn.
So

Sx = µx+ (S − µI)x = µx+ (T − λI)νx = (µ+ (αM − λ)ν)x+ yν .

As yν ∈M−, it follows by definition of the diagonal coefficients that we have
σM = µ + (αM − λ)ν . Hence σM = µ if and only if αM = λ and therefore
the diagonal multiplicity of µ is also equal to d. As the index of µ relative
to S equals 1, it follows by assumption that the diagonal multiplicity of µ
is equal to the algebraic multiplicity of µ, hence m = d. So it also follows
that the diagonal multiplicity of λ is equal to the algebraic multiplicity of
λ. Hence it indeed suffices to prove the lemma for the case ν = 1.

So now moreover suppose that ν = 1. We need to prove that m = d.
Denote the kernel of T − λI with N . By compactness of T , it follows that
N is finite-dimensional and by definition of the algebraic multiplicity, it
follows that dim(N) = m. For all nonzero x ∈ N , define

M(x) =
⋂

{L ∈ N : x ∈ L} .

From Proposition 3.40, we conclude the following: M(x) ∈ N , αM(x) = λ,
dim(M(x)/M−(x)) = 1 and x ∈M(x) \M−(x). Now suppose that M ∈ N
and that αM = λ. We claim that there exists an x ∈ N such that M =
M(x). To prove this, we consider the restriction of T to M , which we will
denote by T ′. AsM is closed inX, it follows that T ′ :M →M is a compact
map on the Banach space M . Furthermore, denote the restriction of the
identity map toM by IM . As αM = λ ̸= 0, it follows that dim(M/M−) = 1.
So since (T ′ − λIM)M ⊂M−, it follows that T

′ − λIM is not surjective. It
then follows by the Fredholm alternative that T ′−λIM is not injective. So
λ is an eigenvalue of T ′. As the index of λ relative to T equals 1, it follows
that

ker((T ′−λIM)2) =M ∩ker((T −λI)2) =M ∩ker(T −λI) = ker(T ′−λIM).

We conclude that the index of λ relative to T ′ is also equal to 1. Let NM

and WM be the kernel and image of T ′ − λIM respectively. Then WM =
(T ′ − λIM)M ⊂ M− and by Theorem 3.34 we also have that NM ⊕WM

is isomorphic to M . It now follows that there exists an eigenvector x ∈
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NM∩(M \M−). Suppose NM∩(M \M−) = ∅. This implies that NM ⊂M−,
which would imply that NM ⊕ WM ⊂ M− ⊊ M , which contradicts the
fact that NM ⊕ WM is isomorphic to M . So pick a nonzero eigenvector
x ∈ NM ∩ (M \M−). As x ∈ M , it follows that M(x) ⊂ M . Moreover, as
x /∈M−, it also follows that M− ⊊M(x). Together with dim(M/M−) = 1,
this implies that M =M(x).

We now prove that m ≥ d. Let M1 ⊊ ... ⊊ Md be the d subspaces
of N that have λ as diagonal coefficient. By our previous argument, we
can find nonzero eigenvectors x1, ..., xd ∈ N such that Mi = M(xi) for
1 ≤ i ≤ d. Now suppose that for some i we have that xi is a linear
combination of x1, ..., xi−1. As x1, ..., xi−1 ∈Mi−1, it follows that xi ∈Mi−1

and hence that Mi ⊂ Mi−1. This is in contradiction with M1 ⊊ ... ⊊ Md

and therefore x1, ..., xd ∈ N must be linearly independent. We conclude
that m = dim(N) ≥ d.

To prove the other inequality, we again argue by contradiction. Suppose
that m > d. As Mi = M(xi) implies that xi ∈ Mi \ (Mi)−, it follows
that Mi and Cxi ⊕ (Mi)− are isomorphic as Banach spaces. Hence by
applying the Hahn-Banach theorem, there exist linear functionals φi such
that φi(xi) ̸= 0 and (Mi)− ⊂ ker(φi) for 1 ≤ i ≤ d. So if x ∈ Mi and
φi(x) = 0, it follows that x ∈ (Mi)−. By Lemma 3.41, applied to V = N ,
there exists a nonzero eigenvector x ∈

⋂
1≤i≤d ker(φi) and by Proposition

3.40, it follows that αM(x) = λ. So there exists a 1 ≤ j ≤ d such that
M(x) =M(xj). As φj(x) = 0, it follows that x ∈M−(xj) =M−(x), which
contradicts that x ∈ M(x) \M−(x). We conclude that d ≥ m. Together
with the previous inequality, this proves that m = d.

Proof of Theorem 3.35. Let X be a complex Banach space, T a compact
operator on X and N a simple invariant nest for T . By Propositions 3.37
and 3.40, it follows that a nonzero scalar λ ∈ C is an eigenvalue of T if
and only if it is a diagonal coefficient of T . This proves the first part. The
second part of the theorem is precisely given by Proposition 3.42.

The only statement left to prove is the third. By Corollary 3.8, it follows
that T is quasi-nilpotent if and only if it has no nonzero eigenvalues. By the
first statement of this theorem, it follows that T has no nonzero eigenvalues
if and only of αM = 0 for all M ∈ N . Hence T is quasi-nilpotent if and
only if αM = 0 for all M ∈ N .
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4 Equivalence of the Lidskii property and

the nest approximation property

In this section, the extensive theoretical preparations we went through in
the first three sections will be used to prove our final result. We will prove
that for every complex Banach space satisfying the approximation property,
the Lidskii property (LP) and the nest approximation property (NAP) are
equivalent. This is a very recent result, first published in 2016 by Figiel and
Johnson [6]. In this section, we will first discuss the two properties. Then
we will prove the equivalence of these properties following the proofs in [6].
In this section, unless stated otherwise, all Banach spaces are assumed to
be complex and satisfy the approximation property. This is to ensure that
the nuclear trace is well-defined and that Theorem 3.35 applies.

4.1 The Lidskii property and the nest approximation
property

4.1.1 The Lidskii property

It is a well-known fact from linear algebra that the trace is equal to the sum
of the eigenvalues (counted with algebraic multiplicity) for linear operators
on finite-dimensional vector spaces. In 1959, Lidskii proved that a similar
statement holds for the so-called trace-class operators on a Hilbert space
[12]. This is therefore called Lidskii’s theorem. The Lidskii property is the
result of trying to generalize this theorem to arbitrary Banach spaces.

To introduce the Lidskii property, suppose that X is a complex Banach
space and that T is a compact operator on X. Let N be a simple invariant
nest for T . From Lemma 3.26, it follows that the subnest

N0 = {M ∈ N : |αM | > 0}

is countable. Hence the set {αM}M∈N0 of all nonzero diagonal coefficients,
counted according to diagonal multiplicity, is countable. Combined with
Theorem 3.35, it follows that {αM}M∈N0 is the set of all nonzero eigenvalues
of T , counted according to algebraic multiplicity. We can summarize this
in the following proposition.

Proposition 4.1. Let X be a complex Banach space and T a compact
operator on X. Let N be a simple invariant nest for T . Then the nest

N0 = {M ∈ N : |αM | > 0}

is countable. This implies the set of nonzero eigenvalues, counted according
to their algebraic multiplicity is countable, hence this can be written as
{λk}k∈J , where either J = N or there exists an N ∈ N such that J =
{1, . . . , N}.
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Remark. 1. There are other ways to prove that compact operators have
countably many eigenvalues, without appealing to nests or Theorem
3.35. See for example Megginson [15, Theorem 3.4.23] or Conway [2,
Theorem 7.1] for two different approaches.

2. If T is an operator and we write the set of eigenvalues of T as {λk}k∈J ,
then the eigenvalues are always counted according to their algebraic
multiplicity. Furthermore, we always assume J to be defined as in
Proposition 4.1.

Definition 4.2. Let X be a complex Banach space satisfying the approxi-
mation property. X satisfies the Lidskii property if for all nuclear operators
A with absolutely summable eigenvalues {λk}k∈J , the following equality
holds:

Tr(A) =
∑
k∈J

λk.

Remark. In the definition of the Lidskii property, we need to restrict our-
selves to the nuclear operators with absolutely summable eigenvalues. This
assumption cannot be omitted as any Banach space that is not isomorphic
to a Hilbert space has nuclear operators acting on it with non-summable
eigenvalues [9, Theorem 3.11].

4.1.2 The nest approximation property

The nest approximation property is a stronger variant of the approximation
property we already discussed in the first two sections. For the formulation
of the nest approximation property, our starting point will be the second
characterization of the approximation property we used. This stated that a
BanachX has the approximation property if we can uniformly approximate
the identity operator IX by finite rank operators on each compact subset
of X. In the second section, we saw that we can reformulate this statement
more concisely as IX ∈ F (X)

τ
when we adopt the ucc-topology τ . To define

the nest approximation property, we will only need to impose some more
conditions on the operators we use to approximate the identity operator.

Definition 4.3. LetX be a Banach space andN a nest of closed subspaces
of X. We define BN (X) ⊂ B(X) as the set of bounded linear operators
that leave all subspaces in N invariant. Furthermore, we define FN (X) =
F (X) ∩BN (X) and NN (X) = N(X) ∩BN (X).

This allows us to define the N -approximation property and subse-
quently the nest approximation property.

Definition 4.4. LetX be a Banach space andN a nest of closed subspaces
of X. Then X has the N -approximation property (N -AP) if IX ∈ FN (X)

τ
.
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We say that X has the nest approximation property (NAP) if X has the
N -approximation property for any nest N .

In the next subsection, we will prove the following result, which is the
main result of this thesis.

Theorem 4.5 ([6, Theorem 3.2]). Let X be a complex Banach space that
has the approximation property. Then the following are equivalent:

1. X has the nest approximation property.

2. For every quasi-nilpotent nuclear operator A ∈ N(X), we have that
Tr(A) = 0.

3. X has the Lidskii property.

4.2 Proving the equivalence

In this subsection, we will prove Theorem 4.5. However, we first need some
preparatory results.

Definition 4.6. Let X be a Banach space and let V ⊂ X be a (not
necessarily closed) linear subspace. We define the annihilator of V , denoted
by V ⊥, as

V ⊥ = {φ ∈ X∗ : V ⊂ ker(φ)}.

Lemma 4.7. Let X be a Banach space and let V ⊂ X be a (not necessarily

closed) linear subspace. Then V ⊥ = V
⊥
= V ⊥.

Proof. Let {φn}n∈N ⊂ V ⊥ be a convergent sequence of functionals and let
φ be its limit. It follows that ∥φ(x)∥ = ∥φ(x) − φn(x)∥ ≤ ∥φ − φn∥∥x∥
for all x ∈ V . As we can make ∥φ − φn∥ arbitrarily small, it follows that
φ(x) = 0, hence φ ∈ V ⊥. So V ⊥ is closed, hence we have V ⊥ = V ⊥.

V ⊥ ⊂ V
⊥
follows from the fact that V ⊂ ker(φ) implies V ⊂ ker(φ)

as the kernel of a bounded functional is closed. As the other inclusion is
trivial, it follows that V ⊥ = V

⊥
.

Lemma 4.8. Let X be a Banach space and let V ⊂ X be a (not necessarily
closed) linear subspace. Then for all x ∈ X, we have that x ∈ V if and
only if x ∈ ker(φ) for all φ ∈ V ⊥.

Proof. The forward implication is a trivial consequence of the fact that
ker(φ) is closed for all φ ∈ V ⊥.

For the converse implication, we argue by contradiction. Assume that
x ∈ ker(φ) for all φ ∈ V ⊥ and suppose that x /∈ V . This implies that we
can define W = Cx ⊕ V and φ : W → C by φ(αx + v) = α for all α ∈ C
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and v ∈ V . From this it follows that V ⊂ ker(φ) and that φ(x) = 1. As
V is closed, it follows by the Hahn-Banach theorem that we can extend
φ to a bounded functional φ̂ ∈ V ⊥ such that φ̂(x) = 1, contradicting our
assumption.

The following proposition describes the structure of the elements in
FN (X).

Proposition 4.9 ([6, Lemma 1]). Let X be a Banach space and N a
complete nest of subspaces of X. Let x∗ ∈ X∗ and x ∈ X be nonzero.
Then:

1. x∗⊗x ∈ FN (X) if and only if there exists anM ∈ N such that x ∈M
and x∗ ∈ (M−)

⊥.

2. If T ∈ FN (X) has rank n with n > 0, then there exist x1, . . . , xn ∈ X
and x∗1, . . . , x

∗
n ∈ X∗ such that T =

∑n
k=1 x

∗
k ⊗ xk where the rank one

operators x∗k ⊗ xk are in FN (X) for all 1 ≤ k ≤ n.

Proof. 1. Suppose that x∗ ⊗ x ∈ FN (X) and define

N0 = {L ∈ N : x ∈ L}.

We claim that M =
⋂

L∈N0
L works. To prove the first part, note that by

completeness of N , it follows that M ∈ N and by construction it follows
that x ∈M . Now suppose that N ∈ N and N ⊊M , then by construction
of M , it follows that x /∈ N hence we have that Cx ∩ N = {0}. As
x∗ ⊗ x ∈ FN (X), we have that x∗(y)x ∈ Cx ∩ N for all y ∈ N . It follows
that x∗(y) = 0 for all y ∈ N , hence N ⊂ ker(x∗). As this holds for all
N ⊊ M and the kernel of x∗ is closed, it follows that M− ⊂ ker(x∗) and
therefore we have that x∗ ∈ (M−)

⊥.
Conversely, suppose that there exists an M ∈ N such that x ∈ M and

x∗ ∈ (M−)
⊥. To prove that x∗ ⊗ x ∈ FN (X), we show that each subspace

N ∈ N is invariant under x∗ ⊗ x. Let N ∈ N be a subspace and suppose
that M ⊂ N , then obviously for all y ∈ N we have that x∗(y)x ∈M ⊂ N .
On the other hand, if N ⊊ M , it follows that N ⊂ M− and therefore we
have that x∗(y)x = 0 ∈ N for all y ∈ N . In both cases, it follows that N
is an invariant subspace for x∗ ⊗ x. We conclude that x∗ ⊗ x ∈ FN (X).

2. We will proceed by induction on the rank n of T . For n = 1, the claim
is clear. Suppose we have proven the statement for operators T ∈ FN (X)
of rank n − 1 > 0. Let T ∈ FN (X) be an operator of rank n. Denote the
unit sphere in the image TX of T by ST and define

N1 = {L ∈ N : L ∩ ST ̸= ∅}.

AsX ∈ N it follows thatN1 ̸= ∅, so we can defineM =
⋂

L∈N1
L. It is clear

that {L∩ST}L∈N1 is an increasing filtration of closed nonempty subsets of

62



ST . Furthermore, ST is compact as it is a closed and bounded subset of
the finite-dimensional vector space TX. By Lemma 3.38, it follows that⋂

L∈N1
(L ∩ ST ) = M ∩ ST is nonempty. This implies that there exists a

unit vector x1 ∈ M ∩ ST ⊂ TX. Extend {x1} to a basis B = (x1, . . . , xn)
of TX. This implies that there exist linear functionals x∗1, . . . , x

∗
n such that

T =
∑n

k=1 x
∗
k ⊗ xk. We claim that x∗1 ∈ (M−)

⊥. Suppose this claim is true,
then by part 1 of this proposition it follows that x∗1 ⊗ x1 ∈ FN (X). So
T −x∗1⊗x1 =

∑n
k=2 x

∗
k⊗xk ∈ FN (X) is an operator of rank n−1, to which

we can apply our induction hypothesis to complete the proof.
To prove our claim, define

N2 = {L ∈ N : L ⊊M}.

Since we have that L ∩ TX ̸= {0} if and only if L ∩ ST ̸= ∅ for all L ∈ N ,
it follows by definition of M that L ∩ TX = {0} for all L ∈ N2. Since(⋃

L∈N2
L
)
∩ TX =

⋃
L∈N2

(L ∩ TX) = {0} and TL ⊂ L for all L ∈ N2, it
follows that

T
( ⋃

L∈N2

L
)
⊂
( ⋃

L∈N2

L
)
∩ TX = {0}.

This implies that
⋃

L∈N2
L ⊂ ker(T ) and as x1, . . . xn are linearly inde-

pendent, it implies that
⋃

L∈N2
L ⊂ ker(x∗i ) for all 1 ≤ i ≤ n. So in

particularly
⋃

L∈N2
L ⊂ ker(x∗1). By taking the closure it follows that

M− =
⋃

L∈N2
L ⊂ ker(x∗1), hence x

∗
1 ∈ (M−)

⊥.

Remark. Proposition 4.9 quite explicitly describes the operators in FN (X)
for complete nests N . It also shows that for any complete nest N the
space FN (X) is nonempty as the Hahn-Banach theorem guarantees that
there exist operators of rank 1 in FN (X).

Using our knowledge about the structure of FN (X) for complete nests
N , we can connect theN -AP to nuclear operators in the following theorem.

Theorem 4.10 ([6, Theorem 2.1]). Let X be a Banach space with the AP
and N a complete nest of subspaces of X. Then X has the N -AP if and
only if for all T ∈ N(X) such that TM ⊂M− for all nonzero M ∈ N , we
have Tr(T ) = 0.

Proof. Assume that X has the N -AP, so I ∈ FN (X)
τ
. Suppose that we

have a nuclear operator T ∈ N(X) such that TM ⊂ M− for all nonzero
M ∈ N . Let Φ be the map from Theorem 2.27 and define φ = Φ(T ).
By Corollary 2.28, it follows that Tr(T ) = φ(I). So we need to show that

φ(I) = 0. As I ∈ FN (X)
τ
, it suffices to prove that φ vanishes on FN (X).

Let x∗ ⊗ x ∈ FN (X) be a rank one operator. By Proposition 4.9 there
exists an M ∈ N such that x ∈M and x∗ ∈ (M−)

⊥. Using the identity in
Corollary 2.28, it follows that φ(x∗ ⊗ x) = x∗(Tx) = 0 as TM ⊂ M−. So
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φ vanishes on all rank one operators in FN (X). Hence by combining this
with the second part of Proposition 4.9 and the linearity of φ, it follows
that φ vanishes on FN (X). We conclude that Tr(T ) = φ(I) = 0.

For the converse implication, assume that for all T ∈ N(X) such that
TM ⊂ M− for all nonzero M ∈ N , we have Tr(T ) = 0. We argue by

contradiction, so suppose that I /∈ FN (X)
τ
. By Theorem 2.20, there exists

a continuous linear functional φ ∈ (B(X), τ)∗ such that φ(I) = 1 and
φ ∈ FN (X)⊥. Let Φ again be the map of Theorem 2.27. As Φ is bijective,
define T = Φ−1(φ). It follows that Tr(T ) = Φ(T )(I) = φ(I) = 1. Now let
x∗ ⊗ x ∈ FN (X) be a rank one operator, then x∗(Tx) = Φ(T )(x∗ ⊗ x) =
φ(x∗⊗x) = 0 as φ ∈ FN (X)⊥. Now fix a nonzeroM ∈ N and x ∈M , then
this implies that x∗(Tx) = 0 for all x∗ ∈ (M−)

⊥. Hence by Lemma 4.8, it
follows that Tx ∈ M−. As x ∈ M and M ∈ N nonzero were arbitrary, it
follows that TM ⊂ M− for all nonzero M ∈ N . By assumption, it follows
that Tr(T ) = 0, contradicting our choice of T such that Tr(T ) = 1. We

conclude that I ∈ FN (X)
τ
, hence X has the N -AP.

Before we proceed, we need the following lemma.

Lemma 4.11. Let X be a Banach space and N a nest of closed subspaces
of X. Suppose that a sequence {An}n∈N ⊂ BN (X) converges strongly to
A ∈ B(X), then A ∈ BN (X).

Proof. Let M ∈ N be a closed subspace and A be defined as above. As
An ∈ BN (X) for all n ∈ N, it follows that Anx ∈ M for all x ∈ M and
n ∈ N. It now directly follows that Ax = limn→∞Anx ∈ M = M for all
x ∈M . We conclude that AM ⊂M for allM ∈ N , hence A ∈ BN (X).

Corollary 4.12. Let X be a Banach space and N a nest of closed subspaces
of X. Then BN (X) ⊂ B(X) is closed (with respect to the operator norm
topology).

Proof. This directly follows from Lemma 4.11 and the fact that norm con-
vergence implies strong convergence in B(X).

As any maximal nest is complete, we can now combine Theorem 4.10
with Corollary 3.36 to obtain the following result.

Theorem 4.13 ([6, Proposition 2]). Let X be a Banach space with the AP
and N a maximal nest of subspaces of X. Then the following are equivalent:

1. X has the N -AP.

2. For all quasi-nilpotent T ∈ NN (X), we have Tr(T ) = 0.

3. For all T ∈ NN (X) with absolutely summable eigenvalues {λk}k∈J ,
counted according to the algebraic multiplicity, we have Tr(T ) =∑

k∈J λk.
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Proof. We first prove the equivalence 1 ⇐⇒ 2. By Theorem 4.10, it
follows that X has the N -AP if and only if for all T ∈ N(X) such that
TM ⊂M− for all nonzero M ∈ N , we have Tr(T ) = 0.

Assume that for all T ∈ N(X) such that TM ⊂ M− for all nonzero
M ∈ N , we have Tr(T ) = 0. Let T ∈ NN (X) be quasi-nilpotent. Then by
Corollary 3.36 it follows that TM ⊂M− for all nonzero M ∈ N . Hence by
assumption, it follows that Tr(T ) = 0.

To prove the converse implication, assume that for all quasi-nilpotent
T ∈ NN (X), we have Tr(T ) = 0. Suppose we have a nuclear operator
T ∈ N(X) such that TM ⊂ M− for all nonzero M ∈ N . We need to
prove that Tr(T ) = 0. As TM ⊂ M− for all nonzero M ∈ N , it follows
that T ∈ NN (X) and by Corollary 3.36 it follows that T is quasi-nilpotent.
Hence by assumption, it follows that Tr(T ) = 0.

We finish the proof by proving the equivalence 2 ⇐⇒ 3. The im-
plication 3 =⇒ 2 is trivial by definition of a quasi-nilpotent operator.
So it remains to prove the implication 2 =⇒ 3. So assume that for all
quasi-nilpotent T ∈ NN (X), we have Tr(T ) = 0. Let A ∈ NN (X) be
a nuclear operator with absolutely summable eigenvalues. Denote these
eigenvalues by {λk}k∈J , where each eigenvalue is counted according to the
algebraic multiplicity and the eigenvalue 0 is excluded. By Theorem 3.35,
these eigenvalues precisely correspond to the nonzero diagonal coefficients
αM of A, including their multiplicity. This allows us to define a sequence of
distinct subspaces {Mk}k∈J ∈ N such that αMk

= λk. As λk ̸= 0, it follows
that dim(Mk/(Mk)−) = 1 for all k ∈ J . This allows us to use Riesz’ Lemma
to find a unit vector xk ∈ Mk such that ∥xk − y∥ ≥ 1

2
for all y ∈ (Mk)−.

SinceMk and Cxk⊕ (Mk)− are isomorphic as Banach spaces, we can define
x∗k : Mk → C by x∗k(αxk + y) = α for all α ∈ C and y ∈ (Mk)−. It follows
that for all y ∈ (Mk)− and nonzero α ∈ C , we have that

|x∗k(αxk + y)| = |α| ≤ 2|α|∥xk + α−1y∥ = 2∥αxk + y∥.

This inequality also extends to the case that α = 0, hence by the Hahn-
Banach theorem we can extend x∗k to a bounded linear functional on X
with norm at most 2. Furthermore, it follows that x∗k(xk) = 1 for all k ∈ J .

Define B =
∑

k∈J λkx
∗
k ⊗ xk. Then B is a nuclear operator on X since∑

k∈J

|λk|∥x∗k∥∥xk∥ ≤ 2
∑
k∈J

|λk| <∞.

By construction it follows that (Mk)− ⊂ ker(x∗k). So by Proposition 4.9,
we have that λkx

∗
k ⊗ xk ∈ FN (X) ⊂ BN (X) for all k ∈ J . Therefore, it

follows by Corollary 4.12 that B ∈ BN (X). As both A and B are nuclear
operators in BN (X), it follows that A−B ∈ NN (X). We claim that A−B
is quasi-nilpotent. If the claim is true, then it follows by assumption that
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0 = Tr(A − B) = Tr(A) −
∑

k∈J λk. So we are finished once we prove the
claim.

We prove that A−B is quasi-nilpotent by showing that (A−B)M ⊂M−
for all M ∈ N . Let M ∈ N be arbitrary. If dim(M/M−) = 0, there is
nothing to prove as (A−B)M ⊂M =M− since A−B ∈ BN (X). So now
suppose that dim(M/M−) = 1. We distinguish two cases: αM = 0 and
αM ̸= 0.

If αM = 0, it follows that AM ⊂ M−. Furthermore, it follows that
M /∈ {Mk}k∈J . This defines two sets of indices

J1 = {k :Mk ⊂M−} and J2 = {k :M ⊂ (Mk)−},

that form a partition of J . For arbitrary x ∈M , it then follows that

Bx =
∑
k∈J

λkx
∗
k(x)xk =

∑
k∈J1

λkx
∗
k(x)xk +

∑
k∈J2

λkx
∗
k(x)xk

=
∑
k∈J1

λkx
∗
k(x)xk + 0 ∈M−.

So AM ⊂M− and BM ⊂M− implying that (A−B)M ⊂M−.
If αM ̸= 0, then there exists a K ∈ J such that M =MK . Again define

J1 = {k :Mk ⊂M−} and J2 = {k :M ⊂ (Mk)−},

that form a partition of J \ {K}. For arbitrary x ∈M , it then follows that

(A−B)x = Ax−
∑
k∈J

λkx
∗
k(x)xk

= Ax− λKx
∗
K(x)xK −

∑
k∈J1

λkx
∗
k(x)xk −

∑
k∈J2

λkx
∗
k(x)xk

= Ax− λKx
∗
K(x)xK −

∑
k∈J1

λkx
∗
k(x)xk.

We need to show that this is an element of M−. As the third term clearly
is an element of M−, it suffices to show that Ax − λKx

∗
K(x)xK ∈ M−. As

xK ∈ M \M−, it follows that M = CxK ⊕M− as vector spaces. So there
exists a unique scalar α ∈ C and vector y ∈ M− such that x = αxK + y.
Furthermore, from Corollary 3.23, it follows that there exists a z ∈ M−
such that Ax = λKx+ z. Combining these expressions yields

Ax− λKx
∗
K(x)xK = λKx+ z − λKx

∗
K(x)xK

= λK(αxK + y) + z − λKx
∗
K(αxK + y)xK

= λK(αxK + y) + z − λKαxK

= λKy + z ∈M−,

hence A−B is indeed quasi-nilpotent.
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Having proven Theorem 4.13, most of the work towards proving Theo-
rem 4.5 is done. We only need a few more results before we can finish the
proof.

Lemma 4.14. Let X be a Banach space and let N and M be nests of
closed subspaces of X such that N ⊂ M. If X has the M-AP, then it also
has the N -AP.

Proof. Suppose that X has the M-AP. As N ⊂ M, it is obvious that
FM(X) ⊂ FN (X). Since X has the M-AP, it follows immediately that

I ∈ FM(X)
τ
⊂ FN (X)

τ
. We conclude that X also has the N -AP.

Corollary 4.15. Let X be a Banach space. Then X has the NAP if and
only if X has the N -AP for all maximal nests N .

Proof. By definition of the NAP, the forward implication is trivial. To
prove the converse implication, assume that X has the N -AP for all max-
imal nests N . Suppose that M is a nest of closed subspaces of X. By
Proposition 3.16, there exists a maximal nest Mmax such that M ⊂ Mmax.
By assumption, X has the Mmax-AP hence by Lemma 4.14 it follows that
X has the M-AP. So X has the M-AP for any nest M, hence X has the
NAP.

Proof of Theorem 4.5. To prove the general statement, we will combine
Theorem 3.21 with Theorem 4.13 and Corollary 4.15. We will prove the
implications 1 =⇒ 3 and 2 =⇒ 1. The equivalences then follow as the
implication 3 =⇒ 2 is obvious.

To prove the implication 1 =⇒ 3, assume that X has the NAP. In
particular, X has the N -AP for all maximal nests N . Let A ∈ N(X)
be a nuclear operator with summable eigenvalues {λk}k∈J . By Theorem
3.21, there exists a maximal nest N of invariant subspaces of A such that
A ∈ NN (X). As X has the N -AP, it follows by Theorem 4.13 that Tr(A) =∑

k∈J λk. As this holds for arbitrary nuclear operators with summable
eigenvalues {λk}k∈J , it follows that X has the Lidskii property.

To prove the implication 2 =⇒ 1, assume that for every quasi-nilpotent
nuclear operator A ∈ N(X), we have that Tr(A) = 0. Let N be a maxi-
mal nest of subspaces of X. It follows that for all quasi-nilpotent nuclear
operators A ∈ NN (X), we have Tr(A) = 0. By Theorem 4.13, it then
follows that X has the N -AP. As N was an arbitrary maximal nest of
subspaces of X, it follows that X has the N -AP for all maximal nests N .
By Corollary 4.15, it follows that X has the NAP.
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of my thesis with great enthusiasm. Thank you for always being available
for questions and thinking with me on the few occasions I got stuck on a
problem or proof. Thank you for your time and effort and all the positive
and critical feedback along the way. It was very helpful.

Furthermore, I would also like to thank Prof. Dr. Erik Koelink for
taking the time to be the second reader of my thesis.

68



References

[1] N. Aronszajn and K.T. Smith. Invariant subspaces of completely con-
tinuous operators. Annals of Mathematics, 60(2):345–350, 1954.

[2] J.B. Conway. A Course in Functional Analysis, 2nd ed., volume 96.
Springer-Verlag, 1990.

[3] J. Diestel, J.H. Fourie, and J. Swart. The metric theory of tensor
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volume 16 of Memoirs of the American Mathematical Society. Ameri-
can Mathematical Society, 1966.

[9] W.B. Johnson, H. König, B. Maurey, and J.R. Retherford. Eigenvalues
of p-summing and lp-type operators in Banach spaces. Journal of
Functional Analysis, 32(3):353–380, 1979.

[10] W.B. Johnson and A. Szankowski. The trace formula in Banach spaces.
Israel Journal of Mathematics, 203(1):389–404, 2014.

[11] C.S. Kubrusly. Hilbert Space Operators: A Problem Solving Approach.
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